Cargando…
Deep Learning Approaches on Defect Detection in High Resolution Aerial Images of Insulators
By detecting the defect location in high-resolution insulator images collected by unmanned aerial vehicle (UAV) in various environments, the occurrence of power failure can be timely detected and the caused economic loss can be reduced. However, the accuracies of existing detection methods are great...
Autores principales: | Wen, Qiaodi, Luo, Ziqi, Chen, Ruitao, Yang, Yifan, Li, Guofa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913352/ https://www.ncbi.nlm.nih.gov/pubmed/33546245 http://dx.doi.org/10.3390/s21041033 |
Ejemplares similares
-
Insulators' Identification and Missing Defect Detection in Aerial Images Based on Cascaded YOLO Models
por: Liu, Jingjing, et al.
Publicado: (2022) -
An Improved CenterNet Model for Insulator Defect Detection Using Aerial Imagery
por: Xia, Haiyang, et al.
Publicado: (2022) -
Forest Fire Smoke Detection Based on Deep Learning Approaches and Unmanned Aerial Vehicle Images
por: Kim, Soon-Young, et al.
Publicado: (2023) -
Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images
por: Säynäjoki, Raita, et al.
Publicado: (2008) -
Whale counting in satellite and aerial images with deep learning
por: Guirado, Emilio, et al.
Publicado: (2019)