Cargando…
A Step-by-Step Damage Identification Method Based on Frequency Response Function and Cross Signature Assurance Criterion
This paper aims to present a method for quantitative damage identification of a simply supported beam, which integrates the frequency response function (FRF) and model updating. The objective function is established using the cross-signature assurance criterion (CSAC) indices of the FRFs between the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913376/ https://www.ncbi.nlm.nih.gov/pubmed/33546231 http://dx.doi.org/10.3390/s21041029 |
_version_ | 1783656791025909760 |
---|---|
author | Zhan, Jiawang Zhang, Fei Siahkouhi, Mohammad |
author_facet | Zhan, Jiawang Zhang, Fei Siahkouhi, Mohammad |
author_sort | Zhan, Jiawang |
collection | PubMed |
description | This paper aims to present a method for quantitative damage identification of a simply supported beam, which integrates the frequency response function (FRF) and model updating. The objective function is established using the cross-signature assurance criterion (CSAC) indices of the FRFs between the measurement points and the natural frequency. The CSAC index in the frequency range between the first two frequencies is found to be sensitive to damage. The proposed identification procedure is tried to identify the single and multiple damages. To verify the effectiveness of the method, numerical simulation and laboratory testing were conducted on some model steel beams with simulated damage by cross-cut sections, and the identification results were compared with the real ones. The analysis results show that the proposed damage evaluation method is insensitive to the systematic test errors and is able to locate and quantify the damage within the beam structures step by step. |
format | Online Article Text |
id | pubmed-7913376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79133762021-02-28 A Step-by-Step Damage Identification Method Based on Frequency Response Function and Cross Signature Assurance Criterion Zhan, Jiawang Zhang, Fei Siahkouhi, Mohammad Sensors (Basel) Article This paper aims to present a method for quantitative damage identification of a simply supported beam, which integrates the frequency response function (FRF) and model updating. The objective function is established using the cross-signature assurance criterion (CSAC) indices of the FRFs between the measurement points and the natural frequency. The CSAC index in the frequency range between the first two frequencies is found to be sensitive to damage. The proposed identification procedure is tried to identify the single and multiple damages. To verify the effectiveness of the method, numerical simulation and laboratory testing were conducted on some model steel beams with simulated damage by cross-cut sections, and the identification results were compared with the real ones. The analysis results show that the proposed damage evaluation method is insensitive to the systematic test errors and is able to locate and quantify the damage within the beam structures step by step. MDPI 2021-02-03 /pmc/articles/PMC7913376/ /pubmed/33546231 http://dx.doi.org/10.3390/s21041029 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhan, Jiawang Zhang, Fei Siahkouhi, Mohammad A Step-by-Step Damage Identification Method Based on Frequency Response Function and Cross Signature Assurance Criterion |
title | A Step-by-Step Damage Identification Method Based on Frequency Response Function and Cross Signature Assurance Criterion |
title_full | A Step-by-Step Damage Identification Method Based on Frequency Response Function and Cross Signature Assurance Criterion |
title_fullStr | A Step-by-Step Damage Identification Method Based on Frequency Response Function and Cross Signature Assurance Criterion |
title_full_unstemmed | A Step-by-Step Damage Identification Method Based on Frequency Response Function and Cross Signature Assurance Criterion |
title_short | A Step-by-Step Damage Identification Method Based on Frequency Response Function and Cross Signature Assurance Criterion |
title_sort | step-by-step damage identification method based on frequency response function and cross signature assurance criterion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913376/ https://www.ncbi.nlm.nih.gov/pubmed/33546231 http://dx.doi.org/10.3390/s21041029 |
work_keys_str_mv | AT zhanjiawang astepbystepdamageidentificationmethodbasedonfrequencyresponsefunctionandcrosssignatureassurancecriterion AT zhangfei astepbystepdamageidentificationmethodbasedonfrequencyresponsefunctionandcrosssignatureassurancecriterion AT siahkouhimohammad astepbystepdamageidentificationmethodbasedonfrequencyresponsefunctionandcrosssignatureassurancecriterion AT zhanjiawang stepbystepdamageidentificationmethodbasedonfrequencyresponsefunctionandcrosssignatureassurancecriterion AT zhangfei stepbystepdamageidentificationmethodbasedonfrequencyresponsefunctionandcrosssignatureassurancecriterion AT siahkouhimohammad stepbystepdamageidentificationmethodbasedonfrequencyresponsefunctionandcrosssignatureassurancecriterion |