Cargando…
On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance
Compressive strength is the most significant metric to evaluate the mechanical properties of concrete. Machine Learning (ML) methods have shown promising results for predicting compressive strength of concrete. However, at present, no in-depth studies have been devoted to the influence of dimensiona...
Autores principales: | Wan, Zhi, Xu, Yading, Šavija, Branko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913490/ https://www.ncbi.nlm.nih.gov/pubmed/33546376 http://dx.doi.org/10.3390/ma14040713 |
Ejemplares similares
-
Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning
por: Kovačević, Miljan, et al.
Publicado: (2021) -
Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning
por: Shen, Zhongjie, et al.
Publicado: (2022) -
Comprehensive Machine Learning-Based Model for Predicting Compressive Strength of Ready-Mix Concrete
por: Xu, Jiajia, et al.
Publicado: (2021) -
Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete
por: Al-Shamiri, Abobakr Khalil, et al.
Publicado: (2020) -
Mechanical Properties of Lightweight Cementitious Cellular Composites Incorporating Micro-Encapsulated Phase Change Material
por: Wu, Zixia, et al.
Publicado: (2021)