Cargando…
Sensor Fusion and Convolutional Neural Networks for Indoor Occupancy Prediction Using Multiple Low-Cost Low-Resolution Heat Sensor Data
Indoor occupancy prediction is a prerequisite for the management of energy consumption, security, health, and other systems in smart buildings. Previous studies have shown that buildings that automatize their heating, lighting, air conditioning, and ventilation systems through considering the occupa...
Autores principales: | Arvidsson, Simon, Gullstrand, Marcus, Sirmacek, Beril, Riveiro, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913583/ https://www.ncbi.nlm.nih.gov/pubmed/33546305 http://dx.doi.org/10.3390/s21041036 |
Ejemplares similares
-
Occupancy Prediction Using Low-Cost and Low-Resolution Heat Sensors for Smart Offices
por: Sirmacek, Beril, et al.
Publicado: (2020) -
Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5D models
por: Wardhana, Girindra, et al.
Publicado: (2020) -
Homogeneous Sensor Fusion Optimization for Low-Cost Inertial Sensors
por: Nemec, Dusan, et al.
Publicado: (2023) -
Experimental Evaluation of Sensor Fusion of Low-Cost UWB and IMU for Localization under Indoor Dynamic Testing Conditions
por: Liu, Chengkun, et al.
Publicado: (2022) -
Low-Cost CO Sensor Calibration Using One Dimensional Convolutional Neural Network
por: Ali, Sharafat, et al.
Publicado: (2023)