Cargando…
Predicting and Interpreting Spatial Accidents through MDLSTM
Predicting and interpreting the spatial location and causes of traffic accidents is one of the current hot topics in traffic safety. This research purposed a multi-dimensional long-short term memory neural network model (MDLSTM) to fit the non-linear relationships between traffic accident characteri...
Autores principales: | Xiao, Tianzheng, Lu, Huapu, Wang, Jianyu, Wang, Katrina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913614/ https://www.ncbi.nlm.nih.gov/pubmed/33546503 http://dx.doi.org/10.3390/ijerph18041430 |
Ejemplares similares
-
Geographical Detection of Traffic Accidents Spatial Stratified Heterogeneity and Influence Factors
por: Zhang, Yuhuan, et al.
Publicado: (2020) -
Exploring Factors Influencing Injury Severity of Vehicle At-Fault Accidents: A Comparative Analysis of Passenger and Freight Vehicles
por: Wang, Jianyu, et al.
Publicado: (2020) -
Influence Factors on Injury Severity of Traffic Accidents and Differences in Urban Functional Zones: The Empirical Analysis of Beijing
por: Sun, Zhiyuan, et al.
Publicado: (2018) -
An Interpretable Time Series Data Prediction Framework for Severe Accidents in Nuclear Power Plants
por: Fu, Yongjie, et al.
Publicado: (2023) -
Interpretable spatial identity neural network-based epidemic prediction
por: Luo, Lanjun, et al.
Publicado: (2023)