Cargando…

Partial Boolean Functions With Exact Quantum Query Complexity One

We provide two sufficient and necessary conditions to characterize any n-bit partial Boolean function with exact quantum query complexity 1. Using the first characterization, we present all n-bit partial Boolean functions that depend on n bits and can be computed exactly by a 1-query quantum algorit...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Guoliang, Qiu, Daowen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913633/
https://www.ncbi.nlm.nih.gov/pubmed/33546475
http://dx.doi.org/10.3390/e23020189
Descripción
Sumario:We provide two sufficient and necessary conditions to characterize any n-bit partial Boolean function with exact quantum query complexity 1. Using the first characterization, we present all n-bit partial Boolean functions that depend on n bits and can be computed exactly by a 1-query quantum algorithm. Due to the second characterization, we construct a function F that maps any n-bit partial Boolean function to some integer, and if an n-bit partial Boolean function f depends on k bits and can be computed exactly by a 1-query quantum algorithm, then [Formula: see text] is non-positive. In addition, we show that the number of all n-bit partial Boolean functions that depend on k bits and can be computed exactly by a 1-query quantum algorithm is not bigger than an upper bound depending on n and k. Most importantly, the upper bound is far less than the number of all n-bit partial Boolean functions for all efficiently big n.