Cargando…
Diamond Grinding Wheel Condition Monitoring Based on Acoustic Emission Signals
Acoustic emission (AE) phenomenon has a direct relationship with the interaction of tool and material which makes AE the most sensitive one among various process variables. However, its prominent sensitivity also means the characteristics of random and board band. Feature representation is a difficu...
Autores principales: | Bi, Guo, Liu, Shan, Su, Shibo, Wang, Zhongxue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913804/ https://www.ncbi.nlm.nih.gov/pubmed/33557111 http://dx.doi.org/10.3390/s21041054 |
Ejemplares similares
-
Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels
por: González, D., et al.
Publicado: (2022) -
Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing
por: Liu, Chien-Sheng, et al.
Publicado: (2020) -
Grinding of alumina ceramic with microtextured brazed diamond end grinding wheels
por: Wu, Shixiong, et al.
Publicado: (2020) -
Efficient and Precise Grinding of Sapphire Glass Based on Dry Electrical Discharge Dressed Coarse Diamond Grinding Wheel
por: Lu, Yanjun, et al.
Publicado: (2019) -
Diamond grinding wheels production study with the use of the finite element method
por: Kundrák, J., et al.
Publicado: (2016)