Cargando…
Human Eye Optics within a Non-Euclidian Geometrical Approach and Some Implications in Vision Prosthetics Design
An analogy with our previously published theory on the ionospheric auroral gyroscope provides a new perspective in human eye optics. Based on cone cells’ real distribution, we model the human eye macula as a pseudospherical surface. This allows the rigorous description of the photoreceptor cell dens...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913825/ https://www.ncbi.nlm.nih.gov/pubmed/33557081 http://dx.doi.org/10.3390/biom11020215 |
Sumario: | An analogy with our previously published theory on the ionospheric auroral gyroscope provides a new perspective in human eye optics. Based on cone cells’ real distribution, we model the human eye macula as a pseudospherical surface. This allows the rigorous description of the photoreceptor cell densities in the parafoveal zones modeled further by an optimized paving method. The hexagonal photoreceptors’ distribution has been optimally projected on the elliptical pseudosphere, thus designing a prosthetic array counting almost 7000 pixel points. Thanks to the high morphological similarities to a normal human retina, the visual prosthesis performance in camera-free systems might be significantly improved. |
---|