Cargando…
Lightweight Feature Enhancement Network for Single-Shot Object Detection
At present, the one-stage detector based on the lightweight model can achieve real-time speed, but the detection performance is challenging. To enhance the discriminability and robustness of the model extraction features and improve the detector’s detection performance for small objects, we propose...
Autores principales: | Jia, Peng, Liu, Fuxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913902/ https://www.ncbi.nlm.nih.gov/pubmed/33557216 http://dx.doi.org/10.3390/s21041066 |
Ejemplares similares
-
Single-Shot Object Detection via Feature Enhancement and Channel Attention
por: Li, Yi, et al.
Publicado: (2022) -
Evolutionary Multi-Objective One-Shot Filter Pruning for Designing Lightweight Convolutional Neural Network
por: Wu, Tao, et al.
Publicado: (2021) -
An efficient single shot detector with weight-based feature fusion for small object detection
por: Li, Ming, et al.
Publicado: (2023) -
Towards Lightweight Neural Networks for Garbage Object Detection
por: Cai, Xinchen, et al.
Publicado: (2022) -
Single-shot self-supervised object detection in microscopy
por: Midtvedt, Benjamin, et al.
Publicado: (2022)