Cargando…

HIV-1 Infection Transcriptomics: Meta-Analysis of CD4+ T Cells Gene Expression Profiles

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range...

Descripción completa

Detalles Bibliográficos
Autores principales: Coelho, Antonio Victor Campos, Gratton, Rossella, de Melo, João Paulo Britto, Andrade-Santos, José Leandro, Guimarães, Rafael Lima, Crovella, Sergio, Tricarico, Paola Maura, Brandão, Lucas André Cavalcanti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913929/
https://www.ncbi.nlm.nih.gov/pubmed/33557210
http://dx.doi.org/10.3390/v13020244
_version_ 1783656916915847168
author Coelho, Antonio Victor Campos
Gratton, Rossella
de Melo, João Paulo Britto
Andrade-Santos, José Leandro
Guimarães, Rafael Lima
Crovella, Sergio
Tricarico, Paola Maura
Brandão, Lucas André Cavalcanti
author_facet Coelho, Antonio Victor Campos
Gratton, Rossella
de Melo, João Paulo Britto
Andrade-Santos, José Leandro
Guimarães, Rafael Lima
Crovella, Sergio
Tricarico, Paola Maura
Brandão, Lucas André Cavalcanti
author_sort Coelho, Antonio Victor Campos
collection PubMed
description HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.
format Online
Article
Text
id pubmed-7913929
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79139292021-02-28 HIV-1 Infection Transcriptomics: Meta-Analysis of CD4+ T Cells Gene Expression Profiles Coelho, Antonio Victor Campos Gratton, Rossella de Melo, João Paulo Britto Andrade-Santos, José Leandro Guimarães, Rafael Lima Crovella, Sergio Tricarico, Paola Maura Brandão, Lucas André Cavalcanti Viruses Review HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling. MDPI 2021-02-04 /pmc/articles/PMC7913929/ /pubmed/33557210 http://dx.doi.org/10.3390/v13020244 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Coelho, Antonio Victor Campos
Gratton, Rossella
de Melo, João Paulo Britto
Andrade-Santos, José Leandro
Guimarães, Rafael Lima
Crovella, Sergio
Tricarico, Paola Maura
Brandão, Lucas André Cavalcanti
HIV-1 Infection Transcriptomics: Meta-Analysis of CD4+ T Cells Gene Expression Profiles
title HIV-1 Infection Transcriptomics: Meta-Analysis of CD4+ T Cells Gene Expression Profiles
title_full HIV-1 Infection Transcriptomics: Meta-Analysis of CD4+ T Cells Gene Expression Profiles
title_fullStr HIV-1 Infection Transcriptomics: Meta-Analysis of CD4+ T Cells Gene Expression Profiles
title_full_unstemmed HIV-1 Infection Transcriptomics: Meta-Analysis of CD4+ T Cells Gene Expression Profiles
title_short HIV-1 Infection Transcriptomics: Meta-Analysis of CD4+ T Cells Gene Expression Profiles
title_sort hiv-1 infection transcriptomics: meta-analysis of cd4+ t cells gene expression profiles
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913929/
https://www.ncbi.nlm.nih.gov/pubmed/33557210
http://dx.doi.org/10.3390/v13020244
work_keys_str_mv AT coelhoantoniovictorcampos hiv1infectiontranscriptomicsmetaanalysisofcd4tcellsgeneexpressionprofiles
AT grattonrossella hiv1infectiontranscriptomicsmetaanalysisofcd4tcellsgeneexpressionprofiles
AT demelojoaopaulobritto hiv1infectiontranscriptomicsmetaanalysisofcd4tcellsgeneexpressionprofiles
AT andradesantosjoseleandro hiv1infectiontranscriptomicsmetaanalysisofcd4tcellsgeneexpressionprofiles
AT guimaraesrafaellima hiv1infectiontranscriptomicsmetaanalysisofcd4tcellsgeneexpressionprofiles
AT crovellasergio hiv1infectiontranscriptomicsmetaanalysisofcd4tcellsgeneexpressionprofiles
AT tricaricopaolamaura hiv1infectiontranscriptomicsmetaanalysisofcd4tcellsgeneexpressionprofiles
AT brandaolucasandrecavalcanti hiv1infectiontranscriptomicsmetaanalysisofcd4tcellsgeneexpressionprofiles