Cargando…
Optimising Deep Learning at the Edge for Accurate Hourly Air Quality Prediction
Accurate air quality monitoring requires processing of multi-dimensional, multi-location sensor data, which has previously been considered in centralised machine learning models. These are often unsuitable for resource-constrained edge devices. In this article, we address this challenge by: (1) desi...
Autores principales: | Wardana, I Nyoman Kusuma, Gardner, Julian W., Fahmy, Suhaib A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913936/ https://www.ncbi.nlm.nih.gov/pubmed/33557203 http://dx.doi.org/10.3390/s21041064 |
Ejemplares similares
-
A Novel Deep Learning Model for Accurate Pest Detection and Edge Computing Deployment
por: Kang, Huangyi, et al.
Publicado: (2023) -
An IoT enabled system for enhanced air quality monitoring and prediction on the edge
por: Moursi, Ahmed Samy, et al.
Publicado: (2021) -
Accurate Physical Property Predictions via Deep Learning
por: Hou, Yuanyuan, et al.
Publicado: (2022) -
Deep Reinforcement Learning for Edge Caching with Mobility Prediction in Vehicular Networks
por: Choi, Yoonjeong, et al.
Publicado: (2023) -
DeepHE: Accurately predicting human essential genes based on deep learning
por: Zhang, Xue, et al.
Publicado: (2020)