Cargando…
Understanding Demographic Risk Factors for Adverse Outcomes in COVID-19 Patients: Explanation of a Deep Learning Model
This study was to understand the impacts of three key demographic variables, age, gender, and race, on the adverse outcome of all-cause hospitalization or all-cause mortality in patients with COVID-19, using a deep neural network (DNN) analysis. We created a cohort of Veterans who were tested positi...
Autores principales: | Shao, Yijun, Ahmed, Ali, Liappis, Angelike P., Faselis, Charles, Nelson, Stuart J., Zeng-Treitler, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914049/ https://www.ncbi.nlm.nih.gov/pubmed/33681695 http://dx.doi.org/10.1007/s41666-021-00093-9 |
Ejemplares similares
-
Changing Behavior among Nurses to Track Indwelling Urinary Catheters in Hospitalized Patients
por: Yoon, Bona, et al.
Publicado: (2013) -
Hybrid Value-Aware Transformer Architecture for Joint Learning from Longitudinal and Non-Longitudinal Clinical Data
por: Shao, Yijun, et al.
Publicado: (2023) -
Hybrid Value-Aware Transformer Architecture for Joint Learning from Longitudinal and Non-Longitudinal Clinical Data
por: Shao, Yijun, et al.
Publicado: (2023) -
405. Trend in blood culture results in Washington DC during and prior to Pandemic COVID-19
por: Klein, Adam, et al.
Publicado: (2020) -
Enhancing Clinical Data Analysis by Explaining Interaction Effects between Covariates in Deep Neural Network Models
por: Shao, Yijun, et al.
Publicado: (2023)