Cargando…
Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods
The understanding of the correlation between a pore-scale structure and its coupled diffusion transport property is crucial in the virtual design and performance optimization of porous fibrous material for various energy applications. Two most common and widely employed pore-scale modeling technique...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914409/ https://www.ncbi.nlm.nih.gov/pubmed/33562769 http://dx.doi.org/10.3390/ma14040756 |
_version_ | 1783656995319971840 |
---|---|
author | Huang, Xiang Zhou, Wei Deng, Daxiang |
author_facet | Huang, Xiang Zhou, Wei Deng, Daxiang |
author_sort | Huang, Xiang |
collection | PubMed |
description | The understanding of the correlation between a pore-scale structure and its coupled diffusion transport property is crucial in the virtual design and performance optimization of porous fibrous material for various energy applications. Two most common and widely employed pore-scale modeling techniques are the lattice Boltzmann method (LBM) and the pore network modeling (PNM). However, little attention has been paid to the direct comparison between these two methods. To this end, stochastic porous fibrous structures are reconstructed reflecting the structural properties of the fibrous porous material on a statistical level with structural properties obtained from X-ray computed microtomography. Diffusion simulation through the porous phase was subsequently conducted using LBM of D3Q7 lattice and topological equivalent PNM derived from the watershed method, respectively. It is detected that the effective diffusion coefficients between these two methods are in good agreement when the throat radius in the pore network is estimated using the cross-section area equivalent radius. Like most literature, the diffusivity in the in-plane (IP) direction is larger than in the through-plane (TP) direction due to the laid fiber arrangement, but the values are very close. Besides, tortuosity was evaluated from both geometry and transport measurements. Tortuosity values deduced from both methods are in line with the anisotropy of the diffusion coefficients. |
format | Online Article Text |
id | pubmed-7914409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79144092021-03-01 Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods Huang, Xiang Zhou, Wei Deng, Daxiang Materials (Basel) Article The understanding of the correlation between a pore-scale structure and its coupled diffusion transport property is crucial in the virtual design and performance optimization of porous fibrous material for various energy applications. Two most common and widely employed pore-scale modeling techniques are the lattice Boltzmann method (LBM) and the pore network modeling (PNM). However, little attention has been paid to the direct comparison between these two methods. To this end, stochastic porous fibrous structures are reconstructed reflecting the structural properties of the fibrous porous material on a statistical level with structural properties obtained from X-ray computed microtomography. Diffusion simulation through the porous phase was subsequently conducted using LBM of D3Q7 lattice and topological equivalent PNM derived from the watershed method, respectively. It is detected that the effective diffusion coefficients between these two methods are in good agreement when the throat radius in the pore network is estimated using the cross-section area equivalent radius. Like most literature, the diffusivity in the in-plane (IP) direction is larger than in the through-plane (TP) direction due to the laid fiber arrangement, but the values are very close. Besides, tortuosity was evaluated from both geometry and transport measurements. Tortuosity values deduced from both methods are in line with the anisotropy of the diffusion coefficients. MDPI 2021-02-05 /pmc/articles/PMC7914409/ /pubmed/33562769 http://dx.doi.org/10.3390/ma14040756 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Xiang Zhou, Wei Deng, Daxiang Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods |
title | Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods |
title_full | Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods |
title_fullStr | Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods |
title_full_unstemmed | Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods |
title_short | Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods |
title_sort | effective diffusion in fibrous porous media: a comparison study between lattice boltzmann and pore network modeling methods |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914409/ https://www.ncbi.nlm.nih.gov/pubmed/33562769 http://dx.doi.org/10.3390/ma14040756 |
work_keys_str_mv | AT huangxiang effectivediffusioninfibrousporousmediaacomparisonstudybetweenlatticeboltzmannandporenetworkmodelingmethods AT zhouwei effectivediffusioninfibrousporousmediaacomparisonstudybetweenlatticeboltzmannandporenetworkmodelingmethods AT dengdaxiang effectivediffusioninfibrousporousmediaacomparisonstudybetweenlatticeboltzmannandporenetworkmodelingmethods |