Cargando…
A Rolling Bearing Fault Classification Scheme Based on k-Optimized Adaptive Local Iterative Filtering and Improved Multiscale Permutation Entropy
The health condition of the rolling bearing seriously affects the operation of the whole mechanical system. When the rolling bearing parts fail, the time series collected in the field generally shows strong nonlinearity and non-stationarity. To obtain the faulty characteristics of mechanical equipme...
Autores principales: | Zhang, Yi, Lv, Yong, Ge, Mao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914427/ https://www.ncbi.nlm.nih.gov/pubmed/33562457 http://dx.doi.org/10.3390/e23020191 |
Ejemplares similares
-
Optimized Adaptive Local Iterative Filtering Algorithm Based on Permutation Entropy for Rolling Bearing Fault Diagnosis
por: Lv, Yong, et al.
Publicado: (2018) -
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
por: Yuan, Qiang, et al.
Publicado: (2023) -
Fault Diagnosis for Rolling Element Bearings Based on Feature Space Reconstruction and Multiscale Permutation Entropy
por: Zhang, Weibo, et al.
Publicado: (2019) -
Rolling Bearing Diagnosis Based on Composite Multiscale Weighted Permutation Entropy
por: Gan, Xiong, et al.
Publicado: (2018) -
Composite Multiscale Transition Permutation Entropy-Based Fault Diagnosis of Bearings
por: Guo, Jing, et al.
Publicado: (2022)