Cargando…
Deep Learning Using Isotroping, Laplacing, Eigenvalues Interpolative Binding, and Convolved Determinants with Normed Mapping for Large-Scale Image Retrieval
Convolutional neural networks (CNN) are relational with grid-structures and spatial dependencies for two-dimensional images to exploit location adjacencies, color values, and hidden patterns. Convolutional neural networks use sparse connections at high-level sensitivity with layered connection compl...
Autores principales: | Kanwal, Khadija, Tehseen Ahmad, Khawaja, Khan, Rashid, Alhusaini, Naji, Jing, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914434/ https://www.ncbi.nlm.nih.gov/pubmed/33561989 http://dx.doi.org/10.3390/s21041139 |
Ejemplares similares
-
Convolver Design and Convolve-Accumulate Unit Design for Low-Power Edge Computing †
por: Kao, Hsu-Yu, et al.
Publicado: (2021) -
Matching convolved images to optically blurred images on the retina
por: Aissati, Sara, et al.
Publicado: (2022) -
On the numerical solution of Helhmolt's equation and the eigenvalue problem of the laplace operator by the capacitance matrix method
por: Proskurowski, Wlodzimiers
Publicado: (1976) -
Uniqueness and free interpolation for logarithmic potentials and the Cauchy problem for the Laplace equation in R$^{2}$
por: Aleksandrov, A, et al.
Publicado: (1994) -
Accurate approximation in weighted maximum norm by interpolation
por: Melinder, Ingrid
Publicado: (1976)