Cargando…

Hyperdimensional Imaging Contrast Using an Optical Fiber

Fluorescence properties of a molecule can be used to study the structural and functional nature of biological processes. Physical properties, including fluorescence lifetime, emission spectrum, emission polarization, and others, help researchers probe a molecule, produce desired effects, and infer c...

Descripción completa

Detalles Bibliográficos
Autores principales: Chacko, Jenu V., Lee, Han Nim, Wu, Wenxin, Otegui, Marisa S., Eliceiri, Kevin W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914562/
https://www.ncbi.nlm.nih.gov/pubmed/33572130
http://dx.doi.org/10.3390/s21041201
Descripción
Sumario:Fluorescence properties of a molecule can be used to study the structural and functional nature of biological processes. Physical properties, including fluorescence lifetime, emission spectrum, emission polarization, and others, help researchers probe a molecule, produce desired effects, and infer causes and consequences. Correlative imaging techniques such as hyperdimensional imaging microscopy (HDIM) combine the physical properties and biochemical states of a fluorophore. Here we present a fiber-based imaging system that can generate hyper-dimensional contrast by combining multiple fluorescence properties into a single fluorescence lifetime decay curve. Fluorescence lifetime imaging microscopy (FLIM) with controlled excitation polarization and temporally dispersed emission can generate a spectrally coded, polarization-filtered lifetime distribution for a pixel. This HDIM scheme generates a better contrast between different molecules than that from individual techniques. This setup uses only a single detector and is simpler to implement, modular, cost-efficient, and adaptable to any existing FLIM microscope. We present higher contrast data from Arabidopsis thaliana epidermal cells based on intrinsic anthocyanin emission properties under multiphoton excitation. This work lays the foundation for an alternative hyperdimensional imaging system and demonstrates that contrast-based imaging is useful to study cellular heterogeneity in biological samples.