Cargando…
Machine Learning Use for Prognostic Purposes in Multiple Sclerosis
The course of multiple sclerosis begins with a relapsing-remitting phase, which evolves into a secondarily progressive form over an extremely variable period, depending on many factors, each with a subtle influence. To date, no prognostic factors or risk score have been validated to predict disease...
Autores principales: | Seccia, Ruggiero, Romano, Silvia, Salvetti, Marco, Crisanti, Andrea, Palagi, Laura, Grassi, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914671/ https://www.ncbi.nlm.nih.gov/pubmed/33562572 http://dx.doi.org/10.3390/life11020122 |
Ejemplares similares
-
Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis
por: Seccia, Ruggiero, et al.
Publicado: (2020) -
Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study
por: Tacchella, Andrea, et al.
Publicado: (2018) -
Noise in multiple sclerosis: unwanted and necessary
por: Bordi, Isabella, et al.
Publicado: (2014) -
A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic
por: Paoluzzi, Matteo, et al.
Publicado: (2021) -
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
por: Raparelli, Valeria, et al.
Publicado: (2023)