Cargando…
The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships
Trichothecenes are the most prevalent mycotoxins contaminating cereal grains. Some of them are also considered as the virulence factors of Fusarium head blight disease. However, the mechanism behind the structure-activity relationship for trichothecenes remains unexplained. Filling this information...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914836/ https://www.ncbi.nlm.nih.gov/pubmed/33562610 http://dx.doi.org/10.3390/ijms22041604 |
_version_ | 1783657096760262656 |
---|---|
author | Wang, Weijun Zhu, Yan Abraham, Nadine Li, Xiu-Zhen Kimber, Matthew Zhou, Ting |
author_facet | Wang, Weijun Zhu, Yan Abraham, Nadine Li, Xiu-Zhen Kimber, Matthew Zhou, Ting |
author_sort | Wang, Weijun |
collection | PubMed |
description | Trichothecenes are the most prevalent mycotoxins contaminating cereal grains. Some of them are also considered as the virulence factors of Fusarium head blight disease. However, the mechanism behind the structure-activity relationship for trichothecenes remains unexplained. Filling this information gap is a crucial step for developing strategies to manage this large family of mycotoxins in food and feed. Here, we perform an in-depth re-examination of the existing structures of Saccharomyces cerevisiae ribosome complexed with three different trichothecenes. Multiple binding interactions between trichothecenes and 25S rRNA, including hydrogen bonds, nonpolar pi stacking interactions and metal ion coordination interactions, are identified as important binding determinants. These interactions are mainly contributed by the key structural elements to the toxicity of trichothecenes, including the oxygen in the 12,13-epoxide ring and a double bond between C(9) and C(10). In addition, the C(3)-OH group also participates in binding. The comparison of three trichothecenes binding to the ribosome, along with their binding pocket architecture, suggests that the substitutions at different positions impact trichothecenes binding in two different patterns. Moreover, the binding of trichothecenes induced conformation changes of several nucleotide bases in 25S rRNA. This then provides a structural framework for understanding the structure-activity relationships apparent in trichothecenes. This study will facilitate the development of strategies aimed at detoxifying mycotoxins in food and feed and at improving the resistance of cereal crops to Fusarium fungal diseases. |
format | Online Article Text |
id | pubmed-7914836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79148362021-03-01 The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships Wang, Weijun Zhu, Yan Abraham, Nadine Li, Xiu-Zhen Kimber, Matthew Zhou, Ting Int J Mol Sci Article Trichothecenes are the most prevalent mycotoxins contaminating cereal grains. Some of them are also considered as the virulence factors of Fusarium head blight disease. However, the mechanism behind the structure-activity relationship for trichothecenes remains unexplained. Filling this information gap is a crucial step for developing strategies to manage this large family of mycotoxins in food and feed. Here, we perform an in-depth re-examination of the existing structures of Saccharomyces cerevisiae ribosome complexed with three different trichothecenes. Multiple binding interactions between trichothecenes and 25S rRNA, including hydrogen bonds, nonpolar pi stacking interactions and metal ion coordination interactions, are identified as important binding determinants. These interactions are mainly contributed by the key structural elements to the toxicity of trichothecenes, including the oxygen in the 12,13-epoxide ring and a double bond between C(9) and C(10). In addition, the C(3)-OH group also participates in binding. The comparison of three trichothecenes binding to the ribosome, along with their binding pocket architecture, suggests that the substitutions at different positions impact trichothecenes binding in two different patterns. Moreover, the binding of trichothecenes induced conformation changes of several nucleotide bases in 25S rRNA. This then provides a structural framework for understanding the structure-activity relationships apparent in trichothecenes. This study will facilitate the development of strategies aimed at detoxifying mycotoxins in food and feed and at improving the resistance of cereal crops to Fusarium fungal diseases. MDPI 2021-02-05 /pmc/articles/PMC7914836/ /pubmed/33562610 http://dx.doi.org/10.3390/ijms22041604 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Weijun Zhu, Yan Abraham, Nadine Li, Xiu-Zhen Kimber, Matthew Zhou, Ting The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships |
title | The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships |
title_full | The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships |
title_fullStr | The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships |
title_full_unstemmed | The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships |
title_short | The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships |
title_sort | ribosome-binding mode of trichothecene mycotoxins rationalizes their structure—activity relationships |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914836/ https://www.ncbi.nlm.nih.gov/pubmed/33562610 http://dx.doi.org/10.3390/ijms22041604 |
work_keys_str_mv | AT wangweijun theribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT zhuyan theribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT abrahamnadine theribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT lixiuzhen theribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT kimbermatthew theribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT zhouting theribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT wangweijun ribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT zhuyan ribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT abrahamnadine ribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT lixiuzhen ribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT kimbermatthew ribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships AT zhouting ribosomebindingmodeoftrichothecenemycotoxinsrationalizestheirstructureactivityrelationships |