Cargando…
Identification of Crop Type in Crowdsourced Road View Photos with Deep Convolutional Neural Network
In situ ground truth data are an important requirement for producing accurate cropland type map, and this is precisely what is lacking at vast scales. Although volunteered geographic information (VGI) has been proven as a possible solution for in situ data acquisition, processing and extracting valu...
Autores principales: | Wu, Fangming, Wu, Bingfang, Zhang, Miao, Zeng, Hongwei, Tian, Fuyou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914883/ https://www.ncbi.nlm.nih.gov/pubmed/33562266 http://dx.doi.org/10.3390/s21041165 |
Ejemplares similares
-
Challenges and opportunities in remote sensing-based crop monitoring: a review
por: Wu, Bingfang, et al.
Publicado: (2022) -
Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products
por: Zheng, Yang, et al.
Publicado: (2016) -
Crop Identification Using Deep Learning on LUCAS Crop Cover Photos
por: Yordanov, Momchil, et al.
Publicado: (2023) -
Editorial: Convolutional neural networks and deep learning for crop improvement and production
por: Yang, Wanneng, et al.
Publicado: (2022) -
Automatic identification of pavement cracks in public roads using an optimized deep convolutional neural network model
por: Lv, Zhihan, et al.
Publicado: (2023)