Cargando…
Interpretable Machine Learning Models for Three-Way Classification of Cognitive Workload Levels for Eye-Tracking Features
The paper is focussed on the assessment of cognitive workload level using selected machine learning models. In the study, eye-tracking data were gathered from 29 healthy volunteers during examination with three versions of the computerised version of the digit symbol substitution test (DSST). Unders...
Autores principales: | Kaczorowska, Monika, Plechawska-Wójcik, Małgorzata, Tokovarov, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914927/ https://www.ncbi.nlm.nih.gov/pubmed/33572232 http://dx.doi.org/10.3390/brainsci11020210 |
Ejemplares similares
-
On the Improvement of Eye Tracking-Based Cognitive Workload Estimation Using Aggregation Functions
por: Kaczorowska, Monika, et al.
Publicado: (2021) -
Automated Classification of Cognitive Workload Levels Based on Psychophysiological and Behavioural Variables of Ex-Gaussian Distributional Features
por: Kaczorowska, Monika, et al.
Publicado: (2022) -
Recognition of Electroencephalography-Related Features of Neuronal Network Organization in Patients With Schizophrenia Using the Generalized Choquet Integrals
por: Plechawska-Wójcik, Małgorzata, et al.
Publicado: (2021) -
Fast and accurate interpretation of workload classification model
por: Shim, Sooyeon, et al.
Publicado: (2023) -
Three-Way Analysis of Spectrospatial Electromyography Data: Classification and Interpretation
por: Kauppi, Jukka-Pekka, et al.
Publicado: (2015)