Cargando…

Subcellular Localization of uc.8+ as a Prognostic Biomarker in Bladder Cancer Tissue

SIMPLE SUMMARY: DNA regions having high sequence similarity among human, rat and mouse genomes are defined as Ultraconserved Regions. Non-coding RNA transcripts originating by these regions may play relevant roles in the onset and progression of multiple cancer types. We recently found that ultra-co...

Descripción completa

Detalles Bibliográficos
Autores principales: Terreri, Sara, Mancinelli, Sara, Ferro, Matteo, Vitale, Maria Concetta, Perdonà, Sisto, Castaldo, Luigi, Gigantino, Vincenzo, Mercadante, Vincenzo, De Cecio, Rossella, Aquino, Gabriella, Montella, Marco, Angelini, Claudia, Del Prete, Eugenio, Aprile, Marianna, Ciaramella, Angelo, Liguori, Giovanna L., Costa, Valerio, Calin, George A., La Civita, Evelina, Terracciano, Daniela, Febbraio, Ferdinando, Cimmino, Amelia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914980/
https://www.ncbi.nlm.nih.gov/pubmed/33567603
http://dx.doi.org/10.3390/cancers13040681
Descripción
Sumario:SIMPLE SUMMARY: DNA regions having high sequence similarity among human, rat and mouse genomes are defined as Ultraconserved Regions. Non-coding RNA transcripts originating by these regions may play relevant roles in the onset and progression of multiple cancer types. We recently found that ultra-conserved-transcript-8+ (uc.8+) levels correlate with the grading and staging of bladder cancer. The aim of this study is to systematically evaluate the expression of ultra-conserved-transcript-8+ (uc.8+) in biopsies and assess its intracellular localization. Furthermore, we aimed to correlate uc.8+ levels with clinical parameters and patient survival. Our analysis indicates that uc.8+ can localize both in the cytoplasm and nucleus of bladder cells at early stages of tumorigenesis, while in tumors at advanced stages, uc.8+ has a prevalent cytoplasmic localization. These data provide relevant information about uc.8+ localization as a hallmark of tumor stage. Finally, using advanced computer-based techniques, we predicted the binding of uc.8+ to RNA-binding proteins. Our study overall suggests that uc.8+ localization can be used as a prognostic biomarker for bladder cancer. ABSTRACT: Non-coding RNA transcripts originating from Ultraconserved Regions (UCRs) have tissue-specific expression and play relevant roles in the pathophysiology of multiple cancer types. Among them, we recently identified and characterized the ultra-conserved-transcript-8+ (uc.8+), whose levels correlate with grading and staging of bladder cancer. Here, to validate uc.8+ as a potential biomarker in bladder cancer, we assessed its expression and subcellular localization by using tissue microarray on 73 human bladder cancer specimens. We quantified uc.8+ by in-situ hybridization and correlated its expression levels with clinical characteristics and patient survival. The analysis of subcellular localization indicated the simultaneous presence of uc.8+ in the cytoplasm and nucleus of cells from the Low-Grade group, whereas a prevalent cytoplasmic localization was observed in samples from the High-Grade group, supporting the hypothesis of uc.8+ nuclear-to-cytoplasmic translocation in most malignant tumor forms. Moreover, analysis of uc.8+ expression and subcellular localization in tumor-surrounding stroma revealed a marked down-regulation of uc.8+ levels compared to the paired (adjacent) tumor region. Finally, deep machine-learning approaches identified nucleotide sequences associated with uc.8+ localization in nucleus and/or cytoplasm, allowing to predict possible RNA binding proteins associated with uc.8+, recognizing also sequences involved in mRNA cytoplasm-translocation. Our model suggests uc.8+ subcellular localization as a potential prognostic biomarker for bladder cancer.