Cargando…
Deep Learning-Based Detection of Articulatory Features in Arabic and English Speech
This study proposes using object detection techniques to recognize sequences of articulatory features (AFs) from speech utterances by treating AFs of phonemes as multi-label objects in speech spectrogram. The proposed system, called AFD-Obj, recognizes sequence of multi-label AFs in speech signal an...
Autores principales: | Algabri, Mohammed, Mathkour, Hassan, Alsulaiman, Mansour M., Bencherif, Mohamed A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914998/ https://www.ncbi.nlm.nih.gov/pubmed/33572169 http://dx.doi.org/10.3390/s21041205 |
Ejemplares similares
-
Speech recognition using articulatory and excitation source features
por: Rao, K Sreenivasa, et al.
Publicado: (2017) -
Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms
por: Mesallam, Tamer A., et al.
Publicado: (2017) -
Spatial Attention-Based 3D Graph Convolutional Neural Network for Sign Language Recognition
por: Al-Hammadi, Muneer, et al.
Publicado: (2022) -
Articulatory movements modulate auditory responses to speech
por: Agnew, Z.K., et al.
Publicado: (2013) -
ADFAC: Automatic detection of facial articulatory features
por: Garg, Saurabh, et al.
Publicado: (2020)