Cargando…
Calculation of Stopping-Power Ratio from Multiple CT Numbers Using Photon-Counting CT System: Two- and Three-Parameter-Fitting Method
The two-parameter-fitting method (PFM) is commonly used to calculate the stopping-power ratio (SPR). This study proposes a new formalism: a three-PFM, which can be used in multiple spectral computed tomography (CT). Using a photon-counting CT system, seven rod-shaped samples of aluminium, graphite,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915004/ https://www.ncbi.nlm.nih.gov/pubmed/33572251 http://dx.doi.org/10.3390/s21041215 |
_version_ | 1783657136261169152 |
---|---|
author | Lee, Sung Hyun Sunaguchi, Naoki Nagao, Akie Hirano, Yoshiyuki Sakurai, Hiroshi Kano, Yosuke Torikoshi, Masami Kanai, Tatsuaki Tashiro, Mutsumi |
author_facet | Lee, Sung Hyun Sunaguchi, Naoki Nagao, Akie Hirano, Yoshiyuki Sakurai, Hiroshi Kano, Yosuke Torikoshi, Masami Kanai, Tatsuaki Tashiro, Mutsumi |
author_sort | Lee, Sung Hyun |
collection | PubMed |
description | The two-parameter-fitting method (PFM) is commonly used to calculate the stopping-power ratio (SPR). This study proposes a new formalism: a three-PFM, which can be used in multiple spectral computed tomography (CT). Using a photon-counting CT system, seven rod-shaped samples of aluminium, graphite, and poly(methyl methacrylate) (PMMA), and four types of biological phantom materials were placed in a water-filled sample holder. The X-ray tube voltage and current were set at 150 kV and 40 [Formula: see text] A respectively, and four CT images were obtained at four threshold settings. A semi-empirical correction method that corrects the difference between the CT values from the photon-counting CT images and theoretical values in each spectral region was also introduced. Both the two- and three-PFMs were used to calculate the effective atomic number and electron density from multiple CT numbers. The mean excitation energy was calculated via parameterisation with the effective atomic number, and the SPR was then calculated from the calculated electron density and mean excitation energy. Then, the SPRs from both methods were compared with the theoretical values. To estimate the noise level of the CT numbers obtained from the photon-counting CT, CT numbers, including noise, were simulated to evaluate the robustness of the aforementioned PFMs. For the aluminium and graphite, the maximum relative errors for the SPRs calculated using the two-PFM and three-PFM were 17.1% and 7.1%, respectively. For the PMMA and biological phantom materials, the maximum relative errors for the SPRs calculated using the two-PFM and three-PFM were 5.5% and 2.0%, respectively. It was concluded that the three-PFM, compared with the two-PFM, can yield SPRs that are closer to the theoretical values and is less affected by noise. |
format | Online Article Text |
id | pubmed-7915004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79150042021-03-01 Calculation of Stopping-Power Ratio from Multiple CT Numbers Using Photon-Counting CT System: Two- and Three-Parameter-Fitting Method Lee, Sung Hyun Sunaguchi, Naoki Nagao, Akie Hirano, Yoshiyuki Sakurai, Hiroshi Kano, Yosuke Torikoshi, Masami Kanai, Tatsuaki Tashiro, Mutsumi Sensors (Basel) Article The two-parameter-fitting method (PFM) is commonly used to calculate the stopping-power ratio (SPR). This study proposes a new formalism: a three-PFM, which can be used in multiple spectral computed tomography (CT). Using a photon-counting CT system, seven rod-shaped samples of aluminium, graphite, and poly(methyl methacrylate) (PMMA), and four types of biological phantom materials were placed in a water-filled sample holder. The X-ray tube voltage and current were set at 150 kV and 40 [Formula: see text] A respectively, and four CT images were obtained at four threshold settings. A semi-empirical correction method that corrects the difference between the CT values from the photon-counting CT images and theoretical values in each spectral region was also introduced. Both the two- and three-PFMs were used to calculate the effective atomic number and electron density from multiple CT numbers. The mean excitation energy was calculated via parameterisation with the effective atomic number, and the SPR was then calculated from the calculated electron density and mean excitation energy. Then, the SPRs from both methods were compared with the theoretical values. To estimate the noise level of the CT numbers obtained from the photon-counting CT, CT numbers, including noise, were simulated to evaluate the robustness of the aforementioned PFMs. For the aluminium and graphite, the maximum relative errors for the SPRs calculated using the two-PFM and three-PFM were 17.1% and 7.1%, respectively. For the PMMA and biological phantom materials, the maximum relative errors for the SPRs calculated using the two-PFM and three-PFM were 5.5% and 2.0%, respectively. It was concluded that the three-PFM, compared with the two-PFM, can yield SPRs that are closer to the theoretical values and is less affected by noise. MDPI 2021-02-09 /pmc/articles/PMC7915004/ /pubmed/33572251 http://dx.doi.org/10.3390/s21041215 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Sung Hyun Sunaguchi, Naoki Nagao, Akie Hirano, Yoshiyuki Sakurai, Hiroshi Kano, Yosuke Torikoshi, Masami Kanai, Tatsuaki Tashiro, Mutsumi Calculation of Stopping-Power Ratio from Multiple CT Numbers Using Photon-Counting CT System: Two- and Three-Parameter-Fitting Method |
title | Calculation of Stopping-Power Ratio from Multiple CT Numbers Using Photon-Counting CT System: Two- and Three-Parameter-Fitting Method |
title_full | Calculation of Stopping-Power Ratio from Multiple CT Numbers Using Photon-Counting CT System: Two- and Three-Parameter-Fitting Method |
title_fullStr | Calculation of Stopping-Power Ratio from Multiple CT Numbers Using Photon-Counting CT System: Two- and Three-Parameter-Fitting Method |
title_full_unstemmed | Calculation of Stopping-Power Ratio from Multiple CT Numbers Using Photon-Counting CT System: Two- and Three-Parameter-Fitting Method |
title_short | Calculation of Stopping-Power Ratio from Multiple CT Numbers Using Photon-Counting CT System: Two- and Three-Parameter-Fitting Method |
title_sort | calculation of stopping-power ratio from multiple ct numbers using photon-counting ct system: two- and three-parameter-fitting method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915004/ https://www.ncbi.nlm.nih.gov/pubmed/33572251 http://dx.doi.org/10.3390/s21041215 |
work_keys_str_mv | AT leesunghyun calculationofstoppingpowerratiofrommultiplectnumbersusingphotoncountingctsystemtwoandthreeparameterfittingmethod AT sunaguchinaoki calculationofstoppingpowerratiofrommultiplectnumbersusingphotoncountingctsystemtwoandthreeparameterfittingmethod AT nagaoakie calculationofstoppingpowerratiofrommultiplectnumbersusingphotoncountingctsystemtwoandthreeparameterfittingmethod AT hiranoyoshiyuki calculationofstoppingpowerratiofrommultiplectnumbersusingphotoncountingctsystemtwoandthreeparameterfittingmethod AT sakuraihiroshi calculationofstoppingpowerratiofrommultiplectnumbersusingphotoncountingctsystemtwoandthreeparameterfittingmethod AT kanoyosuke calculationofstoppingpowerratiofrommultiplectnumbersusingphotoncountingctsystemtwoandthreeparameterfittingmethod AT torikoshimasami calculationofstoppingpowerratiofrommultiplectnumbersusingphotoncountingctsystemtwoandthreeparameterfittingmethod AT kanaitatsuaki calculationofstoppingpowerratiofrommultiplectnumbersusingphotoncountingctsystemtwoandthreeparameterfittingmethod AT tashiromutsumi calculationofstoppingpowerratiofrommultiplectnumbersusingphotoncountingctsystemtwoandthreeparameterfittingmethod |