Cargando…
Training with Agency-Inspired Feedback from an Instrumented Glove to Improve Functional Grasp Performance
Sensory feedback from wearables can be effective to learn better movement through enhanced information and engagement. Facilitating greater user cognition during movement practice is critical to accelerate gains in motor function during rehabilitation following brain or spinal cord trauma. This prel...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915039/ https://www.ncbi.nlm.nih.gov/pubmed/33562342 http://dx.doi.org/10.3390/s21041173 |
_version_ | 1783657144483053568 |
---|---|
author | Liu, Mingxiao Wilder, Samuel Sanford, Sean Saleh, Soha Harel, Noam Y. Nataraj, Raviraj |
author_facet | Liu, Mingxiao Wilder, Samuel Sanford, Sean Saleh, Soha Harel, Noam Y. Nataraj, Raviraj |
author_sort | Liu, Mingxiao |
collection | PubMed |
description | Sensory feedback from wearables can be effective to learn better movement through enhanced information and engagement. Facilitating greater user cognition during movement practice is critical to accelerate gains in motor function during rehabilitation following brain or spinal cord trauma. This preliminary study presents an approach using an instrumented glove to leverage sense of agency, or perception of control, to provide training feedback for functional grasp. Seventeen able-bodied subjects underwent training and testing with a custom-built sensor glove prototype from our laboratory. The glove utilizes onboard force and flex sensors to provide inputs to an artificial neural network that predicts achievement of “secure” grasp. Onboard visual and audio feedback was provided during training with progressively shorter time delay to induce greater agency by intentional binding, or perceived compression in time between an action (grasp) and sensory consequence (feedback). After training, subjects demonstrated a significant reduction (p < 0.05) in movement pathlength and completion time for a functional task involving grasp-move-place of a small object. Future work will include a model-based algorithm to compute secure grasp, virtual reality immersion, and testing with clinical populations. |
format | Online Article Text |
id | pubmed-7915039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79150392021-03-01 Training with Agency-Inspired Feedback from an Instrumented Glove to Improve Functional Grasp Performance Liu, Mingxiao Wilder, Samuel Sanford, Sean Saleh, Soha Harel, Noam Y. Nataraj, Raviraj Sensors (Basel) Communication Sensory feedback from wearables can be effective to learn better movement through enhanced information and engagement. Facilitating greater user cognition during movement practice is critical to accelerate gains in motor function during rehabilitation following brain or spinal cord trauma. This preliminary study presents an approach using an instrumented glove to leverage sense of agency, or perception of control, to provide training feedback for functional grasp. Seventeen able-bodied subjects underwent training and testing with a custom-built sensor glove prototype from our laboratory. The glove utilizes onboard force and flex sensors to provide inputs to an artificial neural network that predicts achievement of “secure” grasp. Onboard visual and audio feedback was provided during training with progressively shorter time delay to induce greater agency by intentional binding, or perceived compression in time between an action (grasp) and sensory consequence (feedback). After training, subjects demonstrated a significant reduction (p < 0.05) in movement pathlength and completion time for a functional task involving grasp-move-place of a small object. Future work will include a model-based algorithm to compute secure grasp, virtual reality immersion, and testing with clinical populations. MDPI 2021-02-07 /pmc/articles/PMC7915039/ /pubmed/33562342 http://dx.doi.org/10.3390/s21041173 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Liu, Mingxiao Wilder, Samuel Sanford, Sean Saleh, Soha Harel, Noam Y. Nataraj, Raviraj Training with Agency-Inspired Feedback from an Instrumented Glove to Improve Functional Grasp Performance |
title | Training with Agency-Inspired Feedback from an Instrumented Glove to Improve Functional Grasp Performance |
title_full | Training with Agency-Inspired Feedback from an Instrumented Glove to Improve Functional Grasp Performance |
title_fullStr | Training with Agency-Inspired Feedback from an Instrumented Glove to Improve Functional Grasp Performance |
title_full_unstemmed | Training with Agency-Inspired Feedback from an Instrumented Glove to Improve Functional Grasp Performance |
title_short | Training with Agency-Inspired Feedback from an Instrumented Glove to Improve Functional Grasp Performance |
title_sort | training with agency-inspired feedback from an instrumented glove to improve functional grasp performance |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915039/ https://www.ncbi.nlm.nih.gov/pubmed/33562342 http://dx.doi.org/10.3390/s21041173 |
work_keys_str_mv | AT liumingxiao trainingwithagencyinspiredfeedbackfromaninstrumentedglovetoimprovefunctionalgraspperformance AT wildersamuel trainingwithagencyinspiredfeedbackfromaninstrumentedglovetoimprovefunctionalgraspperformance AT sanfordsean trainingwithagencyinspiredfeedbackfromaninstrumentedglovetoimprovefunctionalgraspperformance AT salehsoha trainingwithagencyinspiredfeedbackfromaninstrumentedglovetoimprovefunctionalgraspperformance AT harelnoamy trainingwithagencyinspiredfeedbackfromaninstrumentedglovetoimprovefunctionalgraspperformance AT natarajraviraj trainingwithagencyinspiredfeedbackfromaninstrumentedglovetoimprovefunctionalgraspperformance |