Cargando…
An Attention-Enhanced Multi-Scale and Dual Sign Language Recognition Network Based on a Graph Convolution Network
Sign language is the most important way of communication for hearing-impaired people. Research on sign language recognition can help normal people understand sign language. We reviewed the classic methods of sign language recognition, and the recognition accuracy is not high enough because of redund...
Autores principales: | Meng, Lu, Li, Ronghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915156/ https://www.ncbi.nlm.nih.gov/pubmed/33562715 http://dx.doi.org/10.3390/s21041120 |
Ejemplares similares
-
Spatial Attention-Based 3D Graph Convolutional Neural Network for Sign Language Recognition
por: Al-Hammadi, Muneer, et al.
Publicado: (2022) -
Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
por: Yang, Huaigang, et al.
Publicado: (2022) -
Dynamic graph convolutional network for assembly behavior recognition based on attention mechanism and multi-scale feature fusion
por: Chen, Chengjun, et al.
Publicado: (2022) -
Hypertuned Deep Convolutional Neural Network for Sign Language Recognition
por: Mannan, Abdul, et al.
Publicado: (2022) -
Multi-Scale Attention 3D Convolutional Network for Multimodal Gesture Recognition
por: Chen, Huizhou, et al.
Publicado: (2022)