Cargando…
Sequential Model Based Intrusion Detection System for IoT Servers Using Deep Learning Methods
IoT plays an important role in daily life; commands and data transfer rapidly between the servers and objects to provide services. However, cyber threats have become a critical factor, especially for IoT servers. There should be a vigorous way to protect the network infrastructures from various atta...
Autores principales: | Zhong, Ming, Zhou, Yajin, Chen, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915248/ https://www.ncbi.nlm.nih.gov/pubmed/33562688 http://dx.doi.org/10.3390/s21041113 |
Ejemplares similares
-
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
A Deep Learning-Based Intrusion Detection System for MQTT Enabled IoT
por: Khan, Muhammad Almas, et al.
Publicado: (2021) -
A lightweight intrusion detection method for IoT based on deep learning and dynamic quantization
por: Wang, Zhendong, et al.
Publicado: (2023) -
A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems
por: Baniasadi, Sahba, et al.
Publicado: (2022)