Cargando…
Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm
Machine learning techniques are widely used algorithms for predicting the mechanical properties of concrete. This study is based on the comparison of algorithms between individuals and ensemble approaches, such as bagging. Optimization for bagging is done by making 20 sub-models to depict the accura...
Autores principales: | Ahmad, Ayaz, Farooq, Furqan, Niewiadomski, Pawel, Ostrowski, Krzysztof, Akbar, Arslan, Aslam, Fahid, Alyousef, Rayed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915283/ https://www.ncbi.nlm.nih.gov/pubmed/33567526 http://dx.doi.org/10.3390/ma14040794 |
Ejemplares similares
-
A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified with Fly Ash
por: Farooq, Furqan, et al.
Publicado: (2021) -
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
por: Xu, Yue, et al.
Publicado: (2021) -
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials
por: Ahmad, Waqas, et al.
Publicado: (2021) -
Prediction of Mechanical Properties of Fly-Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-Ensemble Machine-Learning Techniques
por: Amin, Muhammad Nasir, et al.
Publicado: (2022)