Cargando…

Modeling Uniaxial Bond Stress–Slip Behavior of Reinforcing Bars Embedded in Concrete with Different Strengths

This paper aims to study the uniaxial bond stress–slip characteristics of reinforcing bars embedded in concrete with different strengths. Tests were conducted on tension–pull specimens that had a cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variab...

Descripción completa

Detalles Bibliográficos
Autor principal: Tang, Chao-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915352/
https://www.ncbi.nlm.nih.gov/pubmed/33562319
http://dx.doi.org/10.3390/ma14040783
Descripción
Sumario:This paper aims to study the uniaxial bond stress–slip characteristics of reinforcing bars embedded in concrete with different strengths. Tests were conducted on tension–pull specimens that had a cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variable was the concrete compressive strength (20, 40, and 60 MPa). The test results show that in the specimen subjected to any fixed load, the maximum value of the concrete strain occurred around the central position, and its value increased as the compressive strength of the concrete increased. Depending on the embedded position of the steel bars, the bond stress–slip relationship was also different. In addition, the analytical results indicate that the proposed bond stress–slip constitutive relationship is very accurate in describing the true bond stress–slip relationship.