Cargando…
Life Prediction of Battery Using a Neural Gaussian Process with Early Discharge Characteristics
The state of health (SOH) prediction of lithium-ion batteries (LIBs) is of crucial importance for the normal operation of the battery system. In this paper, a new method for cycle life and full life cycle capacity prediction is proposed, which combines the early discharge characteristics with the ne...
Autores principales: | Yin, Aijun, Tan, Zhibin, Tan, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915406/ https://www.ncbi.nlm.nih.gov/pubmed/33562499 http://dx.doi.org/10.3390/s21041087 |
Ejemplares similares
-
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
por: Li, Lingling, et al.
Publicado: (2016) -
Phenol‐Catalyzed Discharge in the Aprotic Lithium‐Oxygen Battery
por: Gao, Xiangwen, et al.
Publicado: (2017) -
Suppressing Self-Discharge with Polymeric Sulfur in Li-S Batteries
por: Jiang, Min, et al.
Publicado: (2018) -
A Gaussian Process State Space Model Fusion Physical Model and Residual Analysis for Fatigue Evaluation
por: Yin, Aijun, et al.
Publicado: (2022) -
Low‐Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior
por: Dong, Xiaoli, et al.
Publicado: (2020)