Cargando…
The Effect of a Hidden Source on the Estimation of Connectivity Networks from Multivariate Time Series
Many methods of Granger causality, or broadly termed connectivity, have been developed to assess the causal relationships between the system variables based only on the information extracted from the time series. The power of these methods to capture the true underlying connectivity structure has be...
Autores principales: | Koutlis, Christos, Kugiumtzis, Dimitris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915465/ https://www.ncbi.nlm.nih.gov/pubmed/33567755 http://dx.doi.org/10.3390/e23020208 |
Ejemplares similares
-
Evaluation of Granger Causality Measures for Constructing Networks from Multivariate Time Series
por: Siggiridou, Elsa, et al.
Publicado: (2019) -
Comparison of Causality Network Estimation in the Sensor and Source Space: Simulation and Application on EEG
por: Koutlis, Christos, et al.
Publicado: (2021) -
Adaptation of Partial Mutual Information from Mixed Embedding to Discrete-Valued Time Series
por: Papapetrou, Maria, et al.
Publicado: (2022) -
Clustering Multivariate Time Series Using Hidden Markov Models
por: Ghassempour, Shima, et al.
Publicado: (2014) -
Quantile hidden semi-Markov models for multivariate time series
por: Merlo, Luca, et al.
Publicado: (2022)