Cargando…
An Estimation Algorithm for General Linear Single Particle Tracking Models with Time-Varying Parameters
Single Particle Tracking (SPT) is a powerful class of methods for studying the dynamics of biomolecules inside living cells. The techniques reveal the trajectories of individual particles, with a resolution well below the diffraction limit of light, and from them the parameters defining the motion m...
Autores principales: | Godoy, Boris I., Vickers, Nicholas A., Andersson, Sean B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915553/ https://www.ncbi.nlm.nih.gov/pubmed/33567600 http://dx.doi.org/10.3390/molecules26040886 |
Ejemplares similares
-
Model Segmentation in Single Particle Tracking
por: Godoy, Boris I., et al.
Publicado: (2021) -
Expectation maximization based framework for joint localization and parameter estimation in single particle tracking from segmented images
por: Lin, Ye, et al.
Publicado: (2021) -
Using generalized linear models to implement g-estimation for survival data with time-varying confounding
por: Seaman, Shaun R., et al.
Publicado: (2021) -
Single-Particle Tracking with Scanning Non-Linear Microscopy
por: Travers, Théo, et al.
Publicado: (2020) -
A Non-Linear Kalman Filter for track parameters estimation in High Energy Physics
por: Ai, Xiaocong, et al.
Publicado: (2021)