Cargando…
Measuring Activities of Daily Living in Stroke Patients with Motion Machine Learning Algorithms: A Pilot Study
Measuring activities of daily living (ADLs) using wearable technologies may offer higher precision and granularity than the current clinical assessments for patients after stroke. This study aimed to develop and determine the accuracy of detecting different ADLs using machine-learning (ML) algorithm...
Autores principales: | Chen, Pin-Wei, Baune, Nathan A., Zwir, Igor, Wang, Jiayu, Swamidass, Victoria, Wong, Alex W.K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915561/ https://www.ncbi.nlm.nih.gov/pubmed/33572116 http://dx.doi.org/10.3390/ijerph18041634 |
Ejemplares similares
-
Effects of Bilateral Passive Range of Motion Exercise on the Function of
Upper Extremities and Activities of Daily Living in Patients with Acute
Stroke
por: Kim, Hyun Ju, et al.
Publicado: (2014) -
Predicting patient-reported outcome of activities of daily living in stroke rehabilitation: a machine learning study
por: Chen, Yu-Wen, et al.
Publicado: (2023) -
Effect of home-based reablement program on improving activities of daily living for patients with stroke: A pilot study
por: Han, Der-Sheng, et al.
Publicado: (2020) -
Wearable full-body motion tracking of activities of daily living predicts disease trajectory in Duchenne muscular dystrophy
por: Ricotti, Valeria, et al.
Publicado: (2023) -
Using machine learning to modify and enhance the daily living questionnaire
por: Panovka, Peleg, et al.
Publicado: (2023)