Cargando…
Unsupervised Anomaly Detection with Distillated Teacher-Student Network Ensemble
We address the problem of unsupervised anomaly detection for multivariate data. Traditional machine learning based anomaly detection algorithms rely on specific assumptions of normal patterns and fail to model complex feature interactions and relations. Recently, existing deep learning based methods...
Autores principales: | Xiao, Qinfeng, Wang, Jing, Lin, Youfang, Gongsa, Wenbo, Hu, Ganghui, Li, Menggang, Wang, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915583/ https://www.ncbi.nlm.nih.gov/pubmed/33561954 http://dx.doi.org/10.3390/e23020201 |
Ejemplares similares
-
An Efficient and Robust Unsupervised Anomaly Detection Method Using Ensemble Random Projection in Surveillance Videos
por: Hu, Jingtao, et al.
Publicado: (2019) -
Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
Unsupervised Anomaly Detection of Healthcare Providers Using Generative Adversarial Networks
por: Naidoo, Krishnan, et al.
Publicado: (2020) -
Publisher Correction: Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021)