Cargando…
A Generative Adversarial Network-Based Image Denoiser Controlling Heterogeneous Losses
We propose a novel generative adversarial network (GAN)-based image denoising method that utilizes heterogeneous losses. In order to improve the restoration quality of the structural information of the generator, the heterogeneous losses, including the structural loss in addition to the conventional...
Autores principales: | Cho, Sung In, Park, Jae Hyeon, Kang, Suk-Ju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915760/ https://www.ncbi.nlm.nih.gov/pubmed/33567620 http://dx.doi.org/10.3390/s21041191 |
Ejemplares similares
-
Digital radiography image denoising using a generative adversarial network
por: Sun, Yuewen, et al.
Publicado: (2018) -
Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss
por: Zhang, Lun, et al.
Publicado: (2022) -
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021) -
A generative adversarial network with “zero-shot” learning for positron image denoising
por: Zhu, Mingwei, et al.
Publicado: (2023) -
An Effective Image Denoising Method for UAV Images via Improved Generative Adversarial Networks
por: Wang, Ruihua, et al.
Publicado: (2018)