Cargando…
A Densely Connected Multi-Branch 3D Convolutional Neural Network for Motor Imagery EEG Decoding
Motor imagery (MI) is a classical method of brain–computer interaction (BCI), in which electroencephalogram (EEG) signal features evoked by imaginary body movements are recognized, and relevant information is extracted. Recently, various deep-learning methods are being focused on in finding an easy-...
Autores principales: | Liu, Tianjun, Yang, Deling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915824/ https://www.ncbi.nlm.nih.gov/pubmed/33562623 http://dx.doi.org/10.3390/brainsci11020197 |
Ejemplares similares
-
A three-branch 3D convolutional neural network for EEG-based different hand movement stages classification
por: Liu, Tianjun, et al.
Publicado: (2021) -
Deep Convolutional Neural Network for EEG-Based Motor Decoding
por: Zhang, Jing, et al.
Publicado: (2022) -
A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Recognition of single upper limb motor imagery tasks from EEG using multi-branch fusion convolutional neural network
por: Zhang, Rui, et al.
Publicado: (2023) -
Conditional Adversarial Domain Adaptation Neural Network for Motor Imagery EEG Decoding
por: Tang, Xingliang, et al.
Publicado: (2020)