Cargando…
Acceleration of Intrusion Detection in Encrypted Network Traffic Using Heterogeneous Hardware †
More than 75% of Internet traffic is now encrypted, and this percentage is constantly increasing. The majority of communications are secured using common encryption protocols such as SSL/TLS and IPsec to ensure security and protect the privacy of Internet users. However, encryption can be exploited...
Autores principales: | Papadogiannaki, Eva, Ioannidis, Sotiris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915898/ https://www.ncbi.nlm.nih.gov/pubmed/33562000 http://dx.doi.org/10.3390/s21041140 |
Ejemplares similares
-
Deep Encrypted Traffic Detection: An Anomaly Detection Framework for Encryption Traffic Based on Parallel Automatic Feature Extraction
por: Long, Gang, et al.
Publicado: (2023) -
Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection
por: Kaliappan, Jayakumar, et al.
Publicado: (2015) -
Robust genetic machine learning ensemble model for intrusion detection in network traffic
por: Akhtar, Muhammad Ali, et al.
Publicado: (2023) -
An Evidence Theoretic Approach for Traffic Signal Intrusion Detection
por: Chowdhury, Abdullahi, et al.
Publicado: (2023) -
Deep Learning for Encrypted Traffic Classification and Unknown Data Detection
por: Pathmaperuma, Madushi H., et al.
Publicado: (2022)