Cargando…
Feasibility of Continual Deep Learning-Based Segmentation for Personalized Adaptive Radiation Therapy in Head and Neck Area
SIMPLE SUMMARY: We analyzed the contouring data of 23 organs-at-risk from 100 patients with head and neck cancer who underwent definitive radiation therapy (RT). Deep learning-based segmentation (DLS) with continual training was compared to DLS with conventional training and deformable image registr...
Autores principales: | Kim, Nalee, Chun, Jaehee, Chang, Jee Suk, Lee, Chang Geol, Keum, Ki Chang, Kim, Jin Sung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915955/ https://www.ncbi.nlm.nih.gov/pubmed/33572310 http://dx.doi.org/10.3390/cancers13040702 |
Ejemplares similares
-
Clinical Evaluation of Commercial Atlas-Based Auto-Segmentation in the Head and Neck Region
por: Lee, Hyothaek, et al.
Publicado: (2019) -
Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery
por: Chung, Seung Yeun, et al.
Publicado: (2021) -
The Prognostic Significance of Neutrophil-to-Lymphocyte Ratio in Head and Neck Cancer Patients Treated with Radiotherapy
por: Cho, Yeona, et al.
Publicado: (2018) -
Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers
por: Kim, Nalee, et al.
Publicado: (2020) -
Predictive value of interim (18)F-FDG-PET in patients with non-small cell lung cancer treated with definitive radiation therapy
por: Kim, Nalee, et al.
Publicado: (2020)