Cargando…
CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN
WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915958/ https://www.ncbi.nlm.nih.gov/pubmed/33562754 http://dx.doi.org/10.3390/s21041114 |
_version_ | 1783657368623513600 |
---|---|
author | Qin, Feng Zuo, Tao Wang, Xing |
author_facet | Qin, Feng Zuo, Tao Wang, Xing |
author_sort | Qin, Feng |
collection | PubMed |
description | WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively. |
format | Online Article Text |
id | pubmed-7915958 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79159582021-03-01 CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN Qin, Feng Zuo, Tao Wang, Xing Sensors (Basel) Article WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively. MDPI 2021-02-05 /pmc/articles/PMC7915958/ /pubmed/33562754 http://dx.doi.org/10.3390/s21041114 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qin, Feng Zuo, Tao Wang, Xing CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN |
title | CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN |
title_full | CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN |
title_fullStr | CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN |
title_full_unstemmed | CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN |
title_short | CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN |
title_sort | ccpos: wifi fingerprint indoor positioning system based on cdae-cnn |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915958/ https://www.ncbi.nlm.nih.gov/pubmed/33562754 http://dx.doi.org/10.3390/s21041114 |
work_keys_str_mv | AT qinfeng ccposwififingerprintindoorpositioningsystembasedoncdaecnn AT zuotao ccposwififingerprintindoorpositioningsystembasedoncdaecnn AT wangxing ccposwififingerprintindoorpositioningsystembasedoncdaecnn |