Cargando…

Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination

The plasma-activated gas is capable of decontaminating surfaces of different materials in remote distances. The effect of plasma-activated water vapor on Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli biofilm contamination was in...

Descripción completa

Detalles Bibliográficos
Autores principales: Kelar Tučeková, Zlata, Vacek, Lukáš, Krumpolec, Richard, Kelar, Jakub, Zemánek, Miroslav, Černák, Mirko, Růžička, Filip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916003/
https://www.ncbi.nlm.nih.gov/pubmed/33572192
http://dx.doi.org/10.3390/molecules26040910
_version_ 1783657379384000512
author Kelar Tučeková, Zlata
Vacek, Lukáš
Krumpolec, Richard
Kelar, Jakub
Zemánek, Miroslav
Černák, Mirko
Růžička, Filip
author_facet Kelar Tučeková, Zlata
Vacek, Lukáš
Krumpolec, Richard
Kelar, Jakub
Zemánek, Miroslav
Černák, Mirko
Růžička, Filip
author_sort Kelar Tučeková, Zlata
collection PubMed
description The plasma-activated gas is capable of decontaminating surfaces of different materials in remote distances. The effect of plasma-activated water vapor on Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli biofilm contamination was investigated on the polypropylene nonwoven textile surface. The robust and technically simple multi-hollow surface dielectric barrier discharge was used as a low-temperature atmospheric plasma source to activate the water-based medium. The germicidal efficiency of short and long-time exposure to plasma-activated water vapor was evaluated by standard microbiological cultivation and fluorescence analysis using a fluorescence multiwell plate reader. The test was repeated in different distances of the contaminated polypropylene nonwoven sample from the surface of the plasma source. The detection of reactive species in plasma-activated gas flow and condensed activated vapor, and thermal and electrical properties of the used plasma source, were measured. The bacterial biofilm decontamination efficiency increased with the exposure time and the plasma source power input. The log reduction of viable biofilm units decreased with the increasing distance from the dielectric surface.
format Online
Article
Text
id pubmed-7916003
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79160032021-03-01 Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination Kelar Tučeková, Zlata Vacek, Lukáš Krumpolec, Richard Kelar, Jakub Zemánek, Miroslav Černák, Mirko Růžička, Filip Molecules Article The plasma-activated gas is capable of decontaminating surfaces of different materials in remote distances. The effect of plasma-activated water vapor on Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli biofilm contamination was investigated on the polypropylene nonwoven textile surface. The robust and technically simple multi-hollow surface dielectric barrier discharge was used as a low-temperature atmospheric plasma source to activate the water-based medium. The germicidal efficiency of short and long-time exposure to plasma-activated water vapor was evaluated by standard microbiological cultivation and fluorescence analysis using a fluorescence multiwell plate reader. The test was repeated in different distances of the contaminated polypropylene nonwoven sample from the surface of the plasma source. The detection of reactive species in plasma-activated gas flow and condensed activated vapor, and thermal and electrical properties of the used plasma source, were measured. The bacterial biofilm decontamination efficiency increased with the exposure time and the plasma source power input. The log reduction of viable biofilm units decreased with the increasing distance from the dielectric surface. MDPI 2021-02-09 /pmc/articles/PMC7916003/ /pubmed/33572192 http://dx.doi.org/10.3390/molecules26040910 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kelar Tučeková, Zlata
Vacek, Lukáš
Krumpolec, Richard
Kelar, Jakub
Zemánek, Miroslav
Černák, Mirko
Růžička, Filip
Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination
title Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination
title_full Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination
title_fullStr Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination
title_full_unstemmed Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination
title_short Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination
title_sort multi-hollow surface dielectric barrier discharge for bacterial biofilm decontamination
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916003/
https://www.ncbi.nlm.nih.gov/pubmed/33572192
http://dx.doi.org/10.3390/molecules26040910
work_keys_str_mv AT kelartucekovazlata multihollowsurfacedielectricbarrierdischargeforbacterialbiofilmdecontamination
AT vaceklukas multihollowsurfacedielectricbarrierdischargeforbacterialbiofilmdecontamination
AT krumpolecrichard multihollowsurfacedielectricbarrierdischargeforbacterialbiofilmdecontamination
AT kelarjakub multihollowsurfacedielectricbarrierdischargeforbacterialbiofilmdecontamination
AT zemanekmiroslav multihollowsurfacedielectricbarrierdischargeforbacterialbiofilmdecontamination
AT cernakmirko multihollowsurfacedielectricbarrierdischargeforbacterialbiofilmdecontamination
AT ruzickafilip multihollowsurfacedielectricbarrierdischargeforbacterialbiofilmdecontamination