Cargando…
OpenADR and Agreement Audit Architecture for a Complete Cycle of a Flexibility Solution
Nowadays, the presence of renewable generation systems and mobile loads (i.e., electric vehicle) spread throughout the distribution network is increasing. The problem is that this type of system introduces an added difficulty since they present a strong dependence on the meteorology and the mobility...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916020/ https://www.ncbi.nlm.nih.gov/pubmed/33572186 http://dx.doi.org/10.3390/s21041204 |
_version_ | 1783657383342374912 |
---|---|
author | Parejo, Antonio García, Sebastián Personal, Enrique Guerrero, Juan Ignacio García, Antonio Leon, Carlos |
author_facet | Parejo, Antonio García, Sebastián Personal, Enrique Guerrero, Juan Ignacio García, Antonio Leon, Carlos |
author_sort | Parejo, Antonio |
collection | PubMed |
description | Nowadays, the presence of renewable generation systems and mobile loads (i.e., electric vehicle) spread throughout the distribution network is increasing. The problem is that this type of system introduces an added difficulty since they present a strong dependence on the meteorology and the mobility needs of the users. This problem forces the distribution system operators to seek tools that make it possible to balance the relationship between consumption and generation. In this sense, automated demand response systems are an appropriate solution that allow the operator to request specific reductions in customers’ consumption, offering a discount to the customer and avoiding network congestion. This paper analyzes the implementation and architecture of a demand response solution based on OpenADR standard and its possible integration with a building management system through a use case. As will be analyzed, a key part of the architecture is the measurement system based on smart meters acting as sensors. This is the base of the auditing system which makes it possible to verify compliance with the consumption reduction agreements. Additionally, this study is completed with a parallel auditing system which makes it possible to verify compliance with the consumption reduction agreements. All of the proposed demand response cycle is implemented as a proof of concept in a classroom in the Escuela Politécnica Superior at the University of Seville, which makes it possible to identify the advantages of this architecture in the ambit of connection between distribution network and buildings. |
format | Online Article Text |
id | pubmed-7916020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79160202021-03-01 OpenADR and Agreement Audit Architecture for a Complete Cycle of a Flexibility Solution Parejo, Antonio García, Sebastián Personal, Enrique Guerrero, Juan Ignacio García, Antonio Leon, Carlos Sensors (Basel) Article Nowadays, the presence of renewable generation systems and mobile loads (i.e., electric vehicle) spread throughout the distribution network is increasing. The problem is that this type of system introduces an added difficulty since they present a strong dependence on the meteorology and the mobility needs of the users. This problem forces the distribution system operators to seek tools that make it possible to balance the relationship between consumption and generation. In this sense, automated demand response systems are an appropriate solution that allow the operator to request specific reductions in customers’ consumption, offering a discount to the customer and avoiding network congestion. This paper analyzes the implementation and architecture of a demand response solution based on OpenADR standard and its possible integration with a building management system through a use case. As will be analyzed, a key part of the architecture is the measurement system based on smart meters acting as sensors. This is the base of the auditing system which makes it possible to verify compliance with the consumption reduction agreements. Additionally, this study is completed with a parallel auditing system which makes it possible to verify compliance with the consumption reduction agreements. All of the proposed demand response cycle is implemented as a proof of concept in a classroom in the Escuela Politécnica Superior at the University of Seville, which makes it possible to identify the advantages of this architecture in the ambit of connection between distribution network and buildings. MDPI 2021-02-09 /pmc/articles/PMC7916020/ /pubmed/33572186 http://dx.doi.org/10.3390/s21041204 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Parejo, Antonio García, Sebastián Personal, Enrique Guerrero, Juan Ignacio García, Antonio Leon, Carlos OpenADR and Agreement Audit Architecture for a Complete Cycle of a Flexibility Solution |
title | OpenADR and Agreement Audit Architecture for a Complete Cycle of a Flexibility Solution |
title_full | OpenADR and Agreement Audit Architecture for a Complete Cycle of a Flexibility Solution |
title_fullStr | OpenADR and Agreement Audit Architecture for a Complete Cycle of a Flexibility Solution |
title_full_unstemmed | OpenADR and Agreement Audit Architecture for a Complete Cycle of a Flexibility Solution |
title_short | OpenADR and Agreement Audit Architecture for a Complete Cycle of a Flexibility Solution |
title_sort | openadr and agreement audit architecture for a complete cycle of a flexibility solution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916020/ https://www.ncbi.nlm.nih.gov/pubmed/33572186 http://dx.doi.org/10.3390/s21041204 |
work_keys_str_mv | AT parejoantonio openadrandagreementauditarchitectureforacompletecycleofaflexibilitysolution AT garciasebastian openadrandagreementauditarchitectureforacompletecycleofaflexibilitysolution AT personalenrique openadrandagreementauditarchitectureforacompletecycleofaflexibilitysolution AT guerrerojuanignacio openadrandagreementauditarchitectureforacompletecycleofaflexibilitysolution AT garciaantonio openadrandagreementauditarchitectureforacompletecycleofaflexibilitysolution AT leoncarlos openadrandagreementauditarchitectureforacompletecycleofaflexibilitysolution |