Cargando…
Strong Tracking PHD Filter Based on Variational Bayesian with Inaccurate Process and Measurement Noise Covariance
Assuming that the measurement and process noise covariances are known, the probability hypothesis density (PHD) filter is effective in real-time multi-target tracking; however, noise covariance is often unknown and time-varying for an actual scene. To solve this problem, a strong tracking PHD filter...
Autores principales: | Hu, Zhentao, Yang, Linlin, Jin, Yong, Wang, Han, Yang, Shibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916040/ https://www.ncbi.nlm.nih.gov/pubmed/33562792 http://dx.doi.org/10.3390/s21041126 |
Ejemplares similares
-
An Overdispersed Black-Box Variational Bayesian–Kalman Filter with Inaccurate Noise Second-Order Statistics
por: Cao, Lin, et al.
Publicado: (2021) -
A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise
por: Gong, Yang, et al.
Publicado: (2021) -
Inaccurate cortical tracking of speech in adults with impaired speech perception in noise
por: Vander Ghinst, Marc, et al.
Publicado: (2021) -
Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance
por: Ge, Baoshuang, et al.
Publicado: (2019) -
Tracking an Underwater Object with Unknown Sensor Noise Covariance Using Orthogonal Polynomial Filters
por: Kumar, Kundan, et al.
Publicado: (2022)