Cargando…
Machine Learning and Simulation-Optimization Coupling for Water Distribution Network Contamination Source Detection
This paper presents and explores a novel methodology for solving the problem of a water distribution network contamination event, which includes determining the exact source of contamination, the contamination start and end times and the injected contaminant concentration. The methodology is based o...
Autores principales: | Grbčić, Luka, Kranjčević, Lado, Družeta, Siniša |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916058/ https://www.ncbi.nlm.nih.gov/pubmed/33562175 http://dx.doi.org/10.3390/s21041157 |
Ejemplares similares
-
A Machine Learning-Based Algorithm for Water Network Contamination Source Localization
por: Grbčić, Luka, et al.
Publicado: (2020) -
Machine-Learning Classification of a Number of Contaminant Sources in an Urban Water Network
por: Lučin, Ivana, et al.
Publicado: (2021) -
Assessment of head loss coefficients for water turbine intake trash-racks by numerical modeling
por: Lučin, Ivana, et al.
Publicado: (2019) -
Tracking Major Sources of Water Contamination Using Machine Learning
por: Wu, Jianyong, et al.
Publicado: (2021) -
Impacts of Atmospheric and Anthropogenic Factors on Microbiological Pollution of the Recreational Coastal Beaches Neighboring Shipping Ports
por: Kraus, Romina, et al.
Publicado: (2022)