Cargando…
Use of Acellular Umbilical Cord-Derived Tissues in Corneal and Ocular Surface Diseases
Blood derived products have become a valuable source of tissue for the treatment of ocular surface diseases that are refractory to conventional treatments. These can be obtained from autologous or allogeneic sources (patient’s own blood or from healthy adult donors/umbilical cord blood, respectively...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916115/ https://www.ncbi.nlm.nih.gov/pubmed/33572327 http://dx.doi.org/10.3390/medicines8020012 |
_version_ | 1783657405413851136 |
---|---|
author | Tovar, Arianna A. White, Ian A. Sabater, Alfonso L. |
author_facet | Tovar, Arianna A. White, Ian A. Sabater, Alfonso L. |
author_sort | Tovar, Arianna A. |
collection | PubMed |
description | Blood derived products have become a valuable source of tissue for the treatment of ocular surface diseases that are refractory to conventional treatments. These can be obtained from autologous or allogeneic sources (patient’s own blood or from healthy adult donors/umbilical cord blood, respectively). Allogeneic cord blood demonstrates practical advantages over alternatives and these advantages will be discussed herein. Umbilical cord blood (UCB) can be divided, generally speaking, into two distinct products: first, mononuclear cells, which can be used in regenerative ophthalmology, and second, the plasma/serum (an acellular fraction), which may be used in the form of eyedrops administered directly to the damaged ocular surface. The rationale for using umbilical cord serum (UCS) to treat ocular surface diseases such as severe dry eye syndrome (DES), persistent epithelial defects (PED), recurrent epithelial erosions, ocular chemical burns, graft versus host disease (GVHD), among others, is the considerably high concentration of growth factors and cytokines, mimicking the natural healing properties of human tears. Allogeneic serum also offers the opportunity for therapeutic treatment to patients who, due to poor heath, cannot provide autologous serum. The mechanism of action involves the stimulation of endogenous cellular proliferation, differentiation and maturation, which is highly efficient in promoting and enhancing corneal epithelial healing where other therapies have previously failed. |
format | Online Article Text |
id | pubmed-7916115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79161152021-03-01 Use of Acellular Umbilical Cord-Derived Tissues in Corneal and Ocular Surface Diseases Tovar, Arianna A. White, Ian A. Sabater, Alfonso L. Medicines (Basel) Review Blood derived products have become a valuable source of tissue for the treatment of ocular surface diseases that are refractory to conventional treatments. These can be obtained from autologous or allogeneic sources (patient’s own blood or from healthy adult donors/umbilical cord blood, respectively). Allogeneic cord blood demonstrates practical advantages over alternatives and these advantages will be discussed herein. Umbilical cord blood (UCB) can be divided, generally speaking, into two distinct products: first, mononuclear cells, which can be used in regenerative ophthalmology, and second, the plasma/serum (an acellular fraction), which may be used in the form of eyedrops administered directly to the damaged ocular surface. The rationale for using umbilical cord serum (UCS) to treat ocular surface diseases such as severe dry eye syndrome (DES), persistent epithelial defects (PED), recurrent epithelial erosions, ocular chemical burns, graft versus host disease (GVHD), among others, is the considerably high concentration of growth factors and cytokines, mimicking the natural healing properties of human tears. Allogeneic serum also offers the opportunity for therapeutic treatment to patients who, due to poor heath, cannot provide autologous serum. The mechanism of action involves the stimulation of endogenous cellular proliferation, differentiation and maturation, which is highly efficient in promoting and enhancing corneal epithelial healing where other therapies have previously failed. MDPI 2021-02-09 /pmc/articles/PMC7916115/ /pubmed/33572327 http://dx.doi.org/10.3390/medicines8020012 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Tovar, Arianna A. White, Ian A. Sabater, Alfonso L. Use of Acellular Umbilical Cord-Derived Tissues in Corneal and Ocular Surface Diseases |
title | Use of Acellular Umbilical Cord-Derived Tissues in Corneal and Ocular Surface Diseases |
title_full | Use of Acellular Umbilical Cord-Derived Tissues in Corneal and Ocular Surface Diseases |
title_fullStr | Use of Acellular Umbilical Cord-Derived Tissues in Corneal and Ocular Surface Diseases |
title_full_unstemmed | Use of Acellular Umbilical Cord-Derived Tissues in Corneal and Ocular Surface Diseases |
title_short | Use of Acellular Umbilical Cord-Derived Tissues in Corneal and Ocular Surface Diseases |
title_sort | use of acellular umbilical cord-derived tissues in corneal and ocular surface diseases |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916115/ https://www.ncbi.nlm.nih.gov/pubmed/33572327 http://dx.doi.org/10.3390/medicines8020012 |
work_keys_str_mv | AT tovarariannaa useofacellularumbilicalcordderivedtissuesincornealandocularsurfacediseases AT whiteiana useofacellularumbilicalcordderivedtissuesincornealandocularsurfacediseases AT sabateralfonsol useofacellularumbilicalcordderivedtissuesincornealandocularsurfacediseases |