Cargando…
CNN-Based Volume Flow Rate Prediction of Oil–Gas–Water Three-Phase Intermittent Flow from Multiple Sensors
In this paper, we propose a deep-learning-based method using a convolutional neural network (CNN) to predict the volume flow rates of individual phases in the oil–gas–water three-phase intermittent flow simultaneously by analyzing the measurement data from multiple sensors, including a temperature s...
Autores principales: | Li, Jinku, Hu, Delin, Chen, Wei, Li, Yi, Zhang, Maomao, Peng, Lihui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916361/ https://www.ncbi.nlm.nih.gov/pubmed/33578690 http://dx.doi.org/10.3390/s21041245 |
Ejemplares similares
-
Measurement of Gas-Oil Two-Phase Flow Patterns by Using CNN Algorithm Based on Dual ECT Sensors with Venturi Tube
por: Xu, Zhuoqun, et al.
Publicado: (2020) -
Void Fraction Measurement of Oil–Gas–Water Three-Phase Flow Using Mutually Perpendicular Ultrasonic Sensor
por: Ren, Weikai, et al.
Publicado: (2020) -
Flow Measurement of Oil-Water Two-Phase Flow at Low Flow Rate Using the Plug-in Conductance Sensor Array
por: Jin, Ningde, et al.
Publicado: (2019) -
Thermal Conductivity Gas Sensor with Enhanced Flow-Rate Independence
por: Wang, Jiayu, et al.
Publicado: (2022) -
Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks
por: Gao, Zhong-Ke, et al.
Publicado: (2014)