Cargando…
Deep Learning Techniques for Speech Emotion Recognition, from Databases to Models
The advancements in neural networks and the on-demand need for accurate and near real-time Speech Emotion Recognition (SER) in human–computer interactions make it mandatory to compare available methods and databases in SER to achieve feasible solutions and a firmer understanding of this open-ended p...
Autores principales: | Abbaschian, Babak Joze, Sierra-Sosa, Daniel, Elmaghraby, Adel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916477/ https://www.ncbi.nlm.nih.gov/pubmed/33578714 http://dx.doi.org/10.3390/s21041249 |
Ejemplares similares
-
A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition
por: Syed, Abbas Shah, et al.
Publicado: (2022) -
A Hierarchical Approach to Activity Recognition and Fall Detection Using Wavelets and Adaptive Pooling
por: Syed, Abbas Shah, et al.
Publicado: (2021) -
Utterance Level Feature Aggregation with Deep Metric Learning for Speech Emotion Recognition
por: Mocanu, Bogdan, et al.
Publicado: (2021) -
Two-Way Feature Extraction for Speech Emotion Recognition Using Deep Learning
por: Aggarwal, Apeksha, et al.
Publicado: (2022) -
A topic modeling framework for spatio-temporal information management
por: Asghari, Mohsen, et al.
Publicado: (2020)