Cargando…
Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma
SIMPLE SUMMARY: Glioblastoma (GBM) is the most malignant primary brain tumor, for which improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic resonance imaging (MRI) in combination with machine learning offers the possibility to collect qualitative and quantit...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916478/ https://www.ncbi.nlm.nih.gov/pubmed/33578746 http://dx.doi.org/10.3390/cancers13040722 |
_version_ | 1783657486124843008 |
---|---|
author | Verduin, Maikel Primakov, Sergey Compter, Inge Woodruff, Henry C. van Kuijk, Sander M. J. Ramaekers, Bram L. T. te Dorsthorst, Maarten Revenich, Elles G. M. ter Laan, Mark Pegge, Sjoert A. H. Meijer, Frederick J. A. Beckervordersandforth, Jan Speel, Ernst Jan Kusters, Benno de Leng, Wendy W. J. Anten, Monique M. Broen, Martijn P. G. Ackermans, Linda Schijns, Olaf E. M. G. Teernstra, Onno Hovinga, Koos Vooijs, Marc A. Tjan-Heijnen, Vivianne C. G. Eekers, Danielle B. P. Postma, Alida A. Lambin, Philippe Hoeben, Ann |
author_facet | Verduin, Maikel Primakov, Sergey Compter, Inge Woodruff, Henry C. van Kuijk, Sander M. J. Ramaekers, Bram L. T. te Dorsthorst, Maarten Revenich, Elles G. M. ter Laan, Mark Pegge, Sjoert A. H. Meijer, Frederick J. A. Beckervordersandforth, Jan Speel, Ernst Jan Kusters, Benno de Leng, Wendy W. J. Anten, Monique M. Broen, Martijn P. G. Ackermans, Linda Schijns, Olaf E. M. G. Teernstra, Onno Hovinga, Koos Vooijs, Marc A. Tjan-Heijnen, Vivianne C. G. Eekers, Danielle B. P. Postma, Alida A. Lambin, Philippe Hoeben, Ann |
author_sort | Verduin, Maikel |
collection | PubMed |
description | SIMPLE SUMMARY: Glioblastoma (GBM) is the most malignant primary brain tumor, for which improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic resonance imaging (MRI) in combination with machine learning offers the possibility to collect qualitative and quantitative imaging features which can be used to predict patient prognosis and relevant tumor markers which can aid in selecting the right treatment. This study showed that combining these MRI features with clinical features has the highest prognostic value for GBM patients; this model performed similarly in an independent GBM cohort, showing its reproducibility. The prediction of tumor markers showed promising results in the training set but not could be validated in the independent dataset. This study shows the potential of using MRI to predict prognosis and tumor markers, but further optimization and prospective studies are warranted. ABSTRACT: Glioblastoma (GBM) is the most malignant primary brain tumor for which no curative treatment options exist. Non-invasive qualitative (Visually Accessible Rembrandt Images (VASARI)) and quantitative (radiomics) imaging features to predict prognosis and clinically relevant markers for GBM patients are needed to guide clinicians. A retrospective analysis of GBM patients in two neuro-oncology centers was conducted. The multimodal Cox-regression model to predict overall survival (OS) was developed using clinical features with VASARI and radiomics features in isocitrate dehydrogenase (IDH)-wild type GBM. Predictive models for IDH-mutation, 06-methylguanine-DNA-methyltransferase (MGMT)-methylation and epidermal growth factor receptor (EGFR) amplification using imaging features were developed using machine learning. The performance of the prognostic model improved upon addition of clinical, VASARI and radiomics features, for which the combined model performed best. This could be reproduced after external validation (C-index 0.711 95% CI 0.64–0.78) and used to stratify Kaplan–Meijer curves in two survival groups (p-value < 0.001). The predictive models performed significantly in the external validation for EGFR amplification (area-under-the-curve (AUC) 0.707, 95% CI 0.582–8.25) and MGMT-methylation (AUC 0.667, 95% CI 0.522–0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436–0.927). The integrated clinical and imaging prognostic model was shown to be robust and of potential clinical relevance. The prediction of molecular markers showed promising results in the training set but could not be validated after external validation in a clinically relevant manner. Overall, these results show the potential of combining clinical features with imaging features for prognostic and predictive models in GBM, but further optimization and larger prospective studies are warranted. |
format | Online Article Text |
id | pubmed-7916478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79164782021-03-01 Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma Verduin, Maikel Primakov, Sergey Compter, Inge Woodruff, Henry C. van Kuijk, Sander M. J. Ramaekers, Bram L. T. te Dorsthorst, Maarten Revenich, Elles G. M. ter Laan, Mark Pegge, Sjoert A. H. Meijer, Frederick J. A. Beckervordersandforth, Jan Speel, Ernst Jan Kusters, Benno de Leng, Wendy W. J. Anten, Monique M. Broen, Martijn P. G. Ackermans, Linda Schijns, Olaf E. M. G. Teernstra, Onno Hovinga, Koos Vooijs, Marc A. Tjan-Heijnen, Vivianne C. G. Eekers, Danielle B. P. Postma, Alida A. Lambin, Philippe Hoeben, Ann Cancers (Basel) Article SIMPLE SUMMARY: Glioblastoma (GBM) is the most malignant primary brain tumor, for which improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic resonance imaging (MRI) in combination with machine learning offers the possibility to collect qualitative and quantitative imaging features which can be used to predict patient prognosis and relevant tumor markers which can aid in selecting the right treatment. This study showed that combining these MRI features with clinical features has the highest prognostic value for GBM patients; this model performed similarly in an independent GBM cohort, showing its reproducibility. The prediction of tumor markers showed promising results in the training set but not could be validated in the independent dataset. This study shows the potential of using MRI to predict prognosis and tumor markers, but further optimization and prospective studies are warranted. ABSTRACT: Glioblastoma (GBM) is the most malignant primary brain tumor for which no curative treatment options exist. Non-invasive qualitative (Visually Accessible Rembrandt Images (VASARI)) and quantitative (radiomics) imaging features to predict prognosis and clinically relevant markers for GBM patients are needed to guide clinicians. A retrospective analysis of GBM patients in two neuro-oncology centers was conducted. The multimodal Cox-regression model to predict overall survival (OS) was developed using clinical features with VASARI and radiomics features in isocitrate dehydrogenase (IDH)-wild type GBM. Predictive models for IDH-mutation, 06-methylguanine-DNA-methyltransferase (MGMT)-methylation and epidermal growth factor receptor (EGFR) amplification using imaging features were developed using machine learning. The performance of the prognostic model improved upon addition of clinical, VASARI and radiomics features, for which the combined model performed best. This could be reproduced after external validation (C-index 0.711 95% CI 0.64–0.78) and used to stratify Kaplan–Meijer curves in two survival groups (p-value < 0.001). The predictive models performed significantly in the external validation for EGFR amplification (area-under-the-curve (AUC) 0.707, 95% CI 0.582–8.25) and MGMT-methylation (AUC 0.667, 95% CI 0.522–0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436–0.927). The integrated clinical and imaging prognostic model was shown to be robust and of potential clinical relevance. The prediction of molecular markers showed promising results in the training set but could not be validated after external validation in a clinically relevant manner. Overall, these results show the potential of combining clinical features with imaging features for prognostic and predictive models in GBM, but further optimization and larger prospective studies are warranted. MDPI 2021-02-10 /pmc/articles/PMC7916478/ /pubmed/33578746 http://dx.doi.org/10.3390/cancers13040722 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Verduin, Maikel Primakov, Sergey Compter, Inge Woodruff, Henry C. van Kuijk, Sander M. J. Ramaekers, Bram L. T. te Dorsthorst, Maarten Revenich, Elles G. M. ter Laan, Mark Pegge, Sjoert A. H. Meijer, Frederick J. A. Beckervordersandforth, Jan Speel, Ernst Jan Kusters, Benno de Leng, Wendy W. J. Anten, Monique M. Broen, Martijn P. G. Ackermans, Linda Schijns, Olaf E. M. G. Teernstra, Onno Hovinga, Koos Vooijs, Marc A. Tjan-Heijnen, Vivianne C. G. Eekers, Danielle B. P. Postma, Alida A. Lambin, Philippe Hoeben, Ann Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma |
title | Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma |
title_full | Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma |
title_fullStr | Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma |
title_full_unstemmed | Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma |
title_short | Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma |
title_sort | prognostic and predictive value of integrated qualitative and quantitative magnetic resonance imaging analysis in glioblastoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916478/ https://www.ncbi.nlm.nih.gov/pubmed/33578746 http://dx.doi.org/10.3390/cancers13040722 |
work_keys_str_mv | AT verduinmaikel prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT primakovsergey prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT compteringe prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT woodruffhenryc prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT vankuijksandermj prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT ramaekersbramlt prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT tedorsthorstmaarten prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT revenichellesgm prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT terlaanmark prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT peggesjoertah prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT meijerfrederickja prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT beckervordersandforthjan prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT speelernstjan prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT kustersbenno prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT delengwendywj prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT antenmoniquem prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT broenmartijnpg prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT ackermanslinda prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT schijnsolafemg prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT teernstraonno prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT hovingakoos prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT vooijsmarca prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT tjanheijnenviviannecg prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT eekersdaniellebp prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT postmaalidaa prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT lambinphilippe prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma AT hoebenann prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma |