Cargando…

Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma

SIMPLE SUMMARY: Glioblastoma (GBM) is the most malignant primary brain tumor, for which improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic resonance imaging (MRI) in combination with machine learning offers the possibility to collect qualitative and quantit...

Descripción completa

Detalles Bibliográficos
Autores principales: Verduin, Maikel, Primakov, Sergey, Compter, Inge, Woodruff, Henry C., van Kuijk, Sander M. J., Ramaekers, Bram L. T., te Dorsthorst, Maarten, Revenich, Elles G. M., ter Laan, Mark, Pegge, Sjoert A. H., Meijer, Frederick J. A., Beckervordersandforth, Jan, Speel, Ernst Jan, Kusters, Benno, de Leng, Wendy W. J., Anten, Monique M., Broen, Martijn P. G., Ackermans, Linda, Schijns, Olaf E. M. G., Teernstra, Onno, Hovinga, Koos, Vooijs, Marc A., Tjan-Heijnen, Vivianne C. G., Eekers, Danielle B. P., Postma, Alida A., Lambin, Philippe, Hoeben, Ann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916478/
https://www.ncbi.nlm.nih.gov/pubmed/33578746
http://dx.doi.org/10.3390/cancers13040722
_version_ 1783657486124843008
author Verduin, Maikel
Primakov, Sergey
Compter, Inge
Woodruff, Henry C.
van Kuijk, Sander M. J.
Ramaekers, Bram L. T.
te Dorsthorst, Maarten
Revenich, Elles G. M.
ter Laan, Mark
Pegge, Sjoert A. H.
Meijer, Frederick J. A.
Beckervordersandforth, Jan
Speel, Ernst Jan
Kusters, Benno
de Leng, Wendy W. J.
Anten, Monique M.
Broen, Martijn P. G.
Ackermans, Linda
Schijns, Olaf E. M. G.
Teernstra, Onno
Hovinga, Koos
Vooijs, Marc A.
Tjan-Heijnen, Vivianne C. G.
Eekers, Danielle B. P.
Postma, Alida A.
Lambin, Philippe
Hoeben, Ann
author_facet Verduin, Maikel
Primakov, Sergey
Compter, Inge
Woodruff, Henry C.
van Kuijk, Sander M. J.
Ramaekers, Bram L. T.
te Dorsthorst, Maarten
Revenich, Elles G. M.
ter Laan, Mark
Pegge, Sjoert A. H.
Meijer, Frederick J. A.
Beckervordersandforth, Jan
Speel, Ernst Jan
Kusters, Benno
de Leng, Wendy W. J.
Anten, Monique M.
Broen, Martijn P. G.
Ackermans, Linda
Schijns, Olaf E. M. G.
Teernstra, Onno
Hovinga, Koos
Vooijs, Marc A.
Tjan-Heijnen, Vivianne C. G.
Eekers, Danielle B. P.
Postma, Alida A.
Lambin, Philippe
Hoeben, Ann
author_sort Verduin, Maikel
collection PubMed
description SIMPLE SUMMARY: Glioblastoma (GBM) is the most malignant primary brain tumor, for which improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic resonance imaging (MRI) in combination with machine learning offers the possibility to collect qualitative and quantitative imaging features which can be used to predict patient prognosis and relevant tumor markers which can aid in selecting the right treatment. This study showed that combining these MRI features with clinical features has the highest prognostic value for GBM patients; this model performed similarly in an independent GBM cohort, showing its reproducibility. The prediction of tumor markers showed promising results in the training set but not could be validated in the independent dataset. This study shows the potential of using MRI to predict prognosis and tumor markers, but further optimization and prospective studies are warranted. ABSTRACT: Glioblastoma (GBM) is the most malignant primary brain tumor for which no curative treatment options exist. Non-invasive qualitative (Visually Accessible Rembrandt Images (VASARI)) and quantitative (radiomics) imaging features to predict prognosis and clinically relevant markers for GBM patients are needed to guide clinicians. A retrospective analysis of GBM patients in two neuro-oncology centers was conducted. The multimodal Cox-regression model to predict overall survival (OS) was developed using clinical features with VASARI and radiomics features in isocitrate dehydrogenase (IDH)-wild type GBM. Predictive models for IDH-mutation, 06-methylguanine-DNA-methyltransferase (MGMT)-methylation and epidermal growth factor receptor (EGFR) amplification using imaging features were developed using machine learning. The performance of the prognostic model improved upon addition of clinical, VASARI and radiomics features, for which the combined model performed best. This could be reproduced after external validation (C-index 0.711 95% CI 0.64–0.78) and used to stratify Kaplan–Meijer curves in two survival groups (p-value < 0.001). The predictive models performed significantly in the external validation for EGFR amplification (area-under-the-curve (AUC) 0.707, 95% CI 0.582–8.25) and MGMT-methylation (AUC 0.667, 95% CI 0.522–0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436–0.927). The integrated clinical and imaging prognostic model was shown to be robust and of potential clinical relevance. The prediction of molecular markers showed promising results in the training set but could not be validated after external validation in a clinically relevant manner. Overall, these results show the potential of combining clinical features with imaging features for prognostic and predictive models in GBM, but further optimization and larger prospective studies are warranted.
format Online
Article
Text
id pubmed-7916478
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79164782021-03-01 Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma Verduin, Maikel Primakov, Sergey Compter, Inge Woodruff, Henry C. van Kuijk, Sander M. J. Ramaekers, Bram L. T. te Dorsthorst, Maarten Revenich, Elles G. M. ter Laan, Mark Pegge, Sjoert A. H. Meijer, Frederick J. A. Beckervordersandforth, Jan Speel, Ernst Jan Kusters, Benno de Leng, Wendy W. J. Anten, Monique M. Broen, Martijn P. G. Ackermans, Linda Schijns, Olaf E. M. G. Teernstra, Onno Hovinga, Koos Vooijs, Marc A. Tjan-Heijnen, Vivianne C. G. Eekers, Danielle B. P. Postma, Alida A. Lambin, Philippe Hoeben, Ann Cancers (Basel) Article SIMPLE SUMMARY: Glioblastoma (GBM) is the most malignant primary brain tumor, for which improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic resonance imaging (MRI) in combination with machine learning offers the possibility to collect qualitative and quantitative imaging features which can be used to predict patient prognosis and relevant tumor markers which can aid in selecting the right treatment. This study showed that combining these MRI features with clinical features has the highest prognostic value for GBM patients; this model performed similarly in an independent GBM cohort, showing its reproducibility. The prediction of tumor markers showed promising results in the training set but not could be validated in the independent dataset. This study shows the potential of using MRI to predict prognosis and tumor markers, but further optimization and prospective studies are warranted. ABSTRACT: Glioblastoma (GBM) is the most malignant primary brain tumor for which no curative treatment options exist. Non-invasive qualitative (Visually Accessible Rembrandt Images (VASARI)) and quantitative (radiomics) imaging features to predict prognosis and clinically relevant markers for GBM patients are needed to guide clinicians. A retrospective analysis of GBM patients in two neuro-oncology centers was conducted. The multimodal Cox-regression model to predict overall survival (OS) was developed using clinical features with VASARI and radiomics features in isocitrate dehydrogenase (IDH)-wild type GBM. Predictive models for IDH-mutation, 06-methylguanine-DNA-methyltransferase (MGMT)-methylation and epidermal growth factor receptor (EGFR) amplification using imaging features were developed using machine learning. The performance of the prognostic model improved upon addition of clinical, VASARI and radiomics features, for which the combined model performed best. This could be reproduced after external validation (C-index 0.711 95% CI 0.64–0.78) and used to stratify Kaplan–Meijer curves in two survival groups (p-value < 0.001). The predictive models performed significantly in the external validation for EGFR amplification (area-under-the-curve (AUC) 0.707, 95% CI 0.582–8.25) and MGMT-methylation (AUC 0.667, 95% CI 0.522–0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436–0.927). The integrated clinical and imaging prognostic model was shown to be robust and of potential clinical relevance. The prediction of molecular markers showed promising results in the training set but could not be validated after external validation in a clinically relevant manner. Overall, these results show the potential of combining clinical features with imaging features for prognostic and predictive models in GBM, but further optimization and larger prospective studies are warranted. MDPI 2021-02-10 /pmc/articles/PMC7916478/ /pubmed/33578746 http://dx.doi.org/10.3390/cancers13040722 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Verduin, Maikel
Primakov, Sergey
Compter, Inge
Woodruff, Henry C.
van Kuijk, Sander M. J.
Ramaekers, Bram L. T.
te Dorsthorst, Maarten
Revenich, Elles G. M.
ter Laan, Mark
Pegge, Sjoert A. H.
Meijer, Frederick J. A.
Beckervordersandforth, Jan
Speel, Ernst Jan
Kusters, Benno
de Leng, Wendy W. J.
Anten, Monique M.
Broen, Martijn P. G.
Ackermans, Linda
Schijns, Olaf E. M. G.
Teernstra, Onno
Hovinga, Koos
Vooijs, Marc A.
Tjan-Heijnen, Vivianne C. G.
Eekers, Danielle B. P.
Postma, Alida A.
Lambin, Philippe
Hoeben, Ann
Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma
title Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma
title_full Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma
title_fullStr Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma
title_full_unstemmed Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma
title_short Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma
title_sort prognostic and predictive value of integrated qualitative and quantitative magnetic resonance imaging analysis in glioblastoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916478/
https://www.ncbi.nlm.nih.gov/pubmed/33578746
http://dx.doi.org/10.3390/cancers13040722
work_keys_str_mv AT verduinmaikel prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT primakovsergey prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT compteringe prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT woodruffhenryc prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT vankuijksandermj prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT ramaekersbramlt prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT tedorsthorstmaarten prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT revenichellesgm prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT terlaanmark prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT peggesjoertah prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT meijerfrederickja prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT beckervordersandforthjan prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT speelernstjan prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT kustersbenno prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT delengwendywj prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT antenmoniquem prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT broenmartijnpg prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT ackermanslinda prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT schijnsolafemg prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT teernstraonno prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT hovingakoos prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT vooijsmarca prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT tjanheijnenviviannecg prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT eekersdaniellebp prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT postmaalidaa prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT lambinphilippe prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma
AT hoebenann prognosticandpredictivevalueofintegratedqualitativeandquantitativemagneticresonanceimaginganalysisinglioblastoma