Cargando…
Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma
Primary bile acids (BAs) and their gut microbial metabolites have a role in regulating human health. Comprehensive characterization of BAs species in human biological samples will aid in understanding the interaction between diet, gut microbiota, and bile acid metabolism. Therefore, we developed a q...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916557/ https://www.ncbi.nlm.nih.gov/pubmed/33578858 http://dx.doi.org/10.3390/metabo11020099 |
_version_ | 1783657504328122368 |
---|---|
author | Zhao, Anqi Zhang, Liyun Zhang, Xuhuiqun Edirisinghe, Indika Burton-Freeman, Britt M. Sandhu, Amandeep K. |
author_facet | Zhao, Anqi Zhang, Liyun Zhang, Xuhuiqun Edirisinghe, Indika Burton-Freeman, Britt M. Sandhu, Amandeep K. |
author_sort | Zhao, Anqi |
collection | PubMed |
description | Primary bile acids (BAs) and their gut microbial metabolites have a role in regulating human health. Comprehensive characterization of BAs species in human biological samples will aid in understanding the interaction between diet, gut microbiota, and bile acid metabolism. Therefore, we developed a qualitative method using ultra-high performance liquid chromatography (UHPLC) coupled with a quadrupole time-of-flight (Q-TOF) to identify BAs in human plasma, feces, and urine samples. A quantitative method was developed using UHPLC coupled with triple quadrupole (QQQ) and applied to a previous clinical trial conducted by our group to understand the bile acid metabolism in overweight/obese middle-aged adults (n = 34) after four weeks strawberry vs. control intervention. The qualitative study tentatively identified a total of 81 BAs in human biological samples. Several BA glucuronide-conjugates were characterized for the first time in human plasma and/or urine samples. The four-week strawberry intervention significantly reduced plasma concentrations of individual secondary BAs, deoxycholic acid, lithocholic acid and their glycine conjugates, as well as glycoursodeoxycholic acid compared to control (p < 0.05); total glucuronide-, total oxidized-, total dehydroxyl-, total secondary, and total plasma BAs were also lowered compared to control (p < 0.05). The reduced secondary BAs concentrations suggest that regular strawberry intake modulates the microbial metabolism of BAs. |
format | Online Article Text |
id | pubmed-7916557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79165572021-03-01 Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma Zhao, Anqi Zhang, Liyun Zhang, Xuhuiqun Edirisinghe, Indika Burton-Freeman, Britt M. Sandhu, Amandeep K. Metabolites Article Primary bile acids (BAs) and their gut microbial metabolites have a role in regulating human health. Comprehensive characterization of BAs species in human biological samples will aid in understanding the interaction between diet, gut microbiota, and bile acid metabolism. Therefore, we developed a qualitative method using ultra-high performance liquid chromatography (UHPLC) coupled with a quadrupole time-of-flight (Q-TOF) to identify BAs in human plasma, feces, and urine samples. A quantitative method was developed using UHPLC coupled with triple quadrupole (QQQ) and applied to a previous clinical trial conducted by our group to understand the bile acid metabolism in overweight/obese middle-aged adults (n = 34) after four weeks strawberry vs. control intervention. The qualitative study tentatively identified a total of 81 BAs in human biological samples. Several BA glucuronide-conjugates were characterized for the first time in human plasma and/or urine samples. The four-week strawberry intervention significantly reduced plasma concentrations of individual secondary BAs, deoxycholic acid, lithocholic acid and their glycine conjugates, as well as glycoursodeoxycholic acid compared to control (p < 0.05); total glucuronide-, total oxidized-, total dehydroxyl-, total secondary, and total plasma BAs were also lowered compared to control (p < 0.05). The reduced secondary BAs concentrations suggest that regular strawberry intake modulates the microbial metabolism of BAs. MDPI 2021-02-10 /pmc/articles/PMC7916557/ /pubmed/33578858 http://dx.doi.org/10.3390/metabo11020099 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Anqi Zhang, Liyun Zhang, Xuhuiqun Edirisinghe, Indika Burton-Freeman, Britt M. Sandhu, Amandeep K. Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma |
title | Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma |
title_full | Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma |
title_fullStr | Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma |
title_full_unstemmed | Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma |
title_short | Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma |
title_sort | comprehensive characterization of bile acids in human biological samples and effect of 4-week strawberry intake on bile acid composition in human plasma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916557/ https://www.ncbi.nlm.nih.gov/pubmed/33578858 http://dx.doi.org/10.3390/metabo11020099 |
work_keys_str_mv | AT zhaoanqi comprehensivecharacterizationofbileacidsinhumanbiologicalsamplesandeffectof4weekstrawberryintakeonbileacidcompositioninhumanplasma AT zhangliyun comprehensivecharacterizationofbileacidsinhumanbiologicalsamplesandeffectof4weekstrawberryintakeonbileacidcompositioninhumanplasma AT zhangxuhuiqun comprehensivecharacterizationofbileacidsinhumanbiologicalsamplesandeffectof4weekstrawberryintakeonbileacidcompositioninhumanplasma AT edirisingheindika comprehensivecharacterizationofbileacidsinhumanbiologicalsamplesandeffectof4weekstrawberryintakeonbileacidcompositioninhumanplasma AT burtonfreemanbrittm comprehensivecharacterizationofbileacidsinhumanbiologicalsamplesandeffectof4weekstrawberryintakeonbileacidcompositioninhumanplasma AT sandhuamandeepk comprehensivecharacterizationofbileacidsinhumanbiologicalsamplesandeffectof4weekstrawberryintakeonbileacidcompositioninhumanplasma |