Cargando…
Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events
Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916592/ https://www.ncbi.nlm.nih.gov/pubmed/33578809 http://dx.doi.org/10.3390/genes12020254 |
_version_ | 1783657512651718656 |
---|---|
author | Mickael, Michel-Edwar Kubick, Norwin Klimovich, Pavel Flournoy, Patrick Henckell Bieńkowska, Irmina Sacharczuk, Mariusz |
author_facet | Mickael, Michel-Edwar Kubick, Norwin Klimovich, Pavel Flournoy, Patrick Henckell Bieńkowska, Irmina Sacharczuk, Mariusz |
author_sort | Mickael, Michel-Edwar |
collection | PubMed |
description | Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system. |
format | Online Article Text |
id | pubmed-7916592 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79165922021-03-01 Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events Mickael, Michel-Edwar Kubick, Norwin Klimovich, Pavel Flournoy, Patrick Henckell Bieńkowska, Irmina Sacharczuk, Mariusz Genes (Basel) Article Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system. MDPI 2021-02-10 /pmc/articles/PMC7916592/ /pubmed/33578809 http://dx.doi.org/10.3390/genes12020254 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mickael, Michel-Edwar Kubick, Norwin Klimovich, Pavel Flournoy, Patrick Henckell Bieńkowska, Irmina Sacharczuk, Mariusz Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events |
title | Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events |
title_full | Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events |
title_fullStr | Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events |
title_full_unstemmed | Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events |
title_short | Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events |
title_sort | paracellular and transcellular leukocytes diapedesis are divergent but interconnected evolutionary events |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916592/ https://www.ncbi.nlm.nih.gov/pubmed/33578809 http://dx.doi.org/10.3390/genes12020254 |
work_keys_str_mv | AT mickaelmicheledwar paracellularandtranscellularleukocytesdiapedesisaredivergentbutinterconnectedevolutionaryevents AT kubicknorwin paracellularandtranscellularleukocytesdiapedesisaredivergentbutinterconnectedevolutionaryevents AT klimovichpavel paracellularandtranscellularleukocytesdiapedesisaredivergentbutinterconnectedevolutionaryevents AT flournoypatrickhenckell paracellularandtranscellularleukocytesdiapedesisaredivergentbutinterconnectedevolutionaryevents AT bienkowskairmina paracellularandtranscellularleukocytesdiapedesisaredivergentbutinterconnectedevolutionaryevents AT sacharczukmariusz paracellularandtranscellularleukocytesdiapedesisaredivergentbutinterconnectedevolutionaryevents |