Cargando…
Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables
Human Locomotion Mode Recognition (LMR) has the potential to be used as a control mechanism for lower-limb active prostheses. Active prostheses can assist and restore a more natural gait for amputees, but as a medical device it must minimize user risks, such as falls and trips. As such, any control...
Autores principales: | Sherratt, Freddie, Plummer, Andrew, Iravani, Pejman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916615/ https://www.ncbi.nlm.nih.gov/pubmed/33578842 http://dx.doi.org/10.3390/s21041264 |
Ejemplares similares
-
On-board Training Strategy for IMU-Based Real-Time Locomotion Recognition of Transtibial Amputees With Robotic Prostheses
por: Xu, Dongfang, et al.
Publicado: (2020) -
Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors
por: Shin, Dongbin, et al.
Publicado: (2021) -
IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks
por: Marcos Mazon, Daniel, et al.
Publicado: (2022) -
Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU
por: Han, Yang, et al.
Publicado: (2021) -
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
por: Ordóñez, Francisco Javier, et al.
Publicado: (2016)