Cargando…
Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition
Emotion recognition has a wide range of potential applications in the real world. Among the emotion recognition data sources, electroencephalography (EEG) signals can record the neural activities across the human brain, providing us a reliable way to recognize the emotional states. Most of existing...
Autores principales: | Shen, Fangyao, Peng, Yong, Kong, Wanzeng, Dai, Guojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916620/ https://www.ncbi.nlm.nih.gov/pubmed/33578835 http://dx.doi.org/10.3390/s21041262 |
Ejemplares similares
-
Fusion Graph Representation of EEG for Emotion Recognition
por: Li, Menghang, et al.
Publicado: (2023) -
EEG Emotion Classification Using an Improved SincNet-Based Deep Learning Model
por: Zeng, Hong, et al.
Publicado: (2019) -
Granger-Causality-Based Multi-Frequency Band EEG Graph Feature Extraction and Fusion for Emotion Recognition
por: Zhang, Jing, et al.
Publicado: (2022) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition
por: Zhang, Hua, et al.
Publicado: (2021)